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Executive Summary 

This report presents the results the Quality of Life impact assessment in the AUTOPILOT project. It 
describes the quality of life impacts as well as the methodology used to assess them. Quality of life 
impacts are defined in this context as the potential implications on health, well-being, and equity, 
reflected by changes to the impact areas personal mobility, traffic safety and efficiency and the 
environment. These changes are evaluated for different automated driving (AD) modes: Automated 
Valet parking, Urban Driving, Highway pilot and Platooning. 
 
The report studies quality of life from a societal rather than an individual perspective focussing on 
impacts coming from changes in the transport system created or augmented with IoT and 
automation. The objective of the AUTOPILOT project being to explore how IoT can accelerate, 
enhance and enable automated driving, the quality of life assessment aims to identify and describe 
the most relevant impact mechanisms, through which IoT could enhance automated driving. The 
focus is on qualitative assessment, including initial estimates on direction and level (small/large) of 
changes. The results of the assessment per impact area (personal mobility, safety, efficiency, 
environment) are presented for each AD mode. The resulting expected implications on societal 
quality of life (health, well-being and equity) are described for all modes collectively. 
 
This work uses a methodology based on the impact assessment framework developed by the 
Trilateral ART WG (the Trilateral Working Group on Automation in Road Transportation between the 
US, EU and Japan). The ART-WG impact assessment subgroup has looked at potential impact 
mechanisms, for which Innamaa (2019) has elaborated an updated version used for quality of life 
assessment in AUTOPILOT. This approach allows for all the available, rather fragmentary, 
information on potential impacts of automated driving and IoT to be utilised systematically, without 
losing sight of the big picture – that is the complex system formed by several interrelated impact 
mechanisms, where changes to one mechanism can have both negative and positive impacts on 
others.  
 
Potential benefits of IoT and automated driving evaluated in AUTOPILOT include smoother driving 
and more reliable trips. These are expected due to better anticipation of and reaction to other road 
users as well as events and road conditions ahead. Shorter headways between vehicles and better 
anticipation offer potential improvements to traffic safety, efficiency and the environment and 
travel comfort and convenience are expected to increase. 
 
The assessment showed that AUTOPILOT AD modes have potential to improve quality of life, but 
benefits are not self-evident. Due to the complexity of the transport system as well as uncertainties 
in the development and deployment of automated driving and connectivity with IoT, impacts are 
challenging to estimate. Personal mobility and travel patterns have a large influence on the size and 
direction of impacts. Thus, he impacts on quality of life are to a large extent dependent on how the 
AD services are implemented, deployed and regulated. It is important to note that the results of this 
work are theoretical. It is assumed that connectivity between vehicles and infrastructure is available, 
widely in use and working as intended. Therefore, the results disregard potential challenges in 
uptake and deployment of the services.  
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1 Introduction and background 

1.1 Purpose and structure of the document 

This document presents the methodology and results of the Quality of Life evaluation in the 
AUTOPILOT project. Quality of life impacts in this context are defined as the potential impacts on 
well-being, health and equity, reflected by changes to traffic safety, traffic efficiency and the 
environment, and personal mobility. 
 
In Chapter 1 background is provided on the AUTOPILOT project in general and the assessed 
functions in particular. Key concepts – IoT, automated driving, and quality of life – are introduced 
and their use within this report explained. The objectives and scope of the study are presented in 
Chapter 2. Chapter 3 describes the methodology of the study, and Chapter 4 presents the results. 
Implications for societal quality of life are presented in Chapter 5. Finally, Chapter 6 provides a 
discussion of the results and forms conclusions.  
 
In should be noted that, in contrast to the other evaluation areas in AUTOPILOT, as for instance 
technical or business impact evaluation, the Quality of Life assessment has a wider focus. It is not 
directly assessing the impacts of the pilot tests, but rather tries to identify the potential impact 
pathways and relationships, which lead to changes in societal quality of life. The work assumes that 
the technology is working and in wider use.   
 

1.2 AUTOPILOT project and pilots 

The AUTOPILOT (Automated driving progressed by Internet of Things, 2017–2019) project under the 
European Horizon 2020 programme has developed and tested IoT based AD modes and services 
with automated driving enhanced, accelerated and/or enabled by IoT: automated valet parking 
(AVP), urban driving, highway pilot, platooning and ride sharing. They have been piloted and 
evaluated at five test sites around Europe located in Vigo (Spain), Tampere (Finland), Versailles 
(France), Livorno (Italy) and Brainport (the Netherlands) (Table 1). In addition, an associated pilot 
site was located in Daejeon, Korea. 
 
Scholliers et al. (2018), Mathews et al. 2019 and Schreiner et al. 2019  present detailed descriptions 
of all the piloted AD modes as well as expected benefits of IoT. To assess user acceptance and 
potential impacts of the services on personal mobility, user tests were conducted at the pilot sites. 
Due to limitations set by legislation and the prototype nature of the technologies, the vehicles were 
mostly driven by authorised drivers. 
 
In order to harmonise the piloting activities across the different sites and ensure coherent 
evaluation, a pilot protocol was developed together with the tasks focusing on user acceptance and 
business impacts. The general purpose of this protocol was to provide general guidelines for the 
pilot sites on how to conduct the user activities. The protocol also included draft versions of user 
surveys, consent forms, project presentations, information sheets for participants etc. that the pilot 
site customised to the local conditions and tested use case. Most of the pilot sites used company 
employees or safety drivers as users, naïve users were recruited only in Tampere. More information 
on the user tests and user acceptance can be found in Ertl et al. (2019). 
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Table 1 – AUTOPILOT Use Cases piloted and evaluation at different Pilot sites 

 
 

1.3 Terminology and key concepts 

1.3.1 Internet of Things 

The term “Internet of Things” (IoT) reflects the rising level of connectivity between different objects 
in the world through the use of the Internet. Not only phones and computers are connected but to 
an increasing extent so are objects such as household devices and vehicles. This connectivity enables 
information exchange between these objects and consequently enhanced services and also 
completely new types of services. 
 
The IEEE  Standards Association (Minerva et al. 2015) broadly defines IoT as a system consisting of 
networks of sensors, actuators, and smart objects whose purpose is to interconnect “all” things, 
including every day and industrial objects, in such a way as to make them intelligent, programmable, 
and more capable of interacting with humans and each other. 
 
The capabilities of smart connected products can be categorized into four groups: monitoring, 
control, optimisation and autonomy. Each of the groups builds on the preceding one (Porter 2014). 
Monitoring capabilities include sensors and external data sources enabled monitoring of the 
products condition, external environment and product’s operation and usage. Monitoring also 
enables alert and notifications of changes in operation and usage of product. Control capabilities 
include embedded software, which enables control of products functions and personalisation of the 
use experience. Together monitoring and control capabilities enable algorithms that optimize 
product operation and use in order to enhance product performance and predictive diagnostics, 
service and repair. Combining previous ones allows self-coordination of operation with other 
products and systems, and self-diagnosis and services, which are considered as autonomy 
capabilities. 

1.3.2 Connected and automated driving 

In the context of Quality of Life evaluation in AUTOPILOT, the use of IoT in automated driving is 
referred to as connected automated driving (CAD); as opposed to autonomous driving, where the 
vehicle relies only on its own sensors to perform all driving related tasks. Connected automated 
driving enables information exchange between vehicles (V2V) and/or vehicles and the infrastructure 
(V2I). The term “connected and automated vehicle” (CAV) refers specifically to automated vehicles 
that are connected to each other (vehicle-to-vehicle, V2V) or to their environment (vehicle-to-
infrastructure, V2I) (e.g. Cavoli et al. 2017). V2V communications provide detailed information about 
vehicles’ movement and drivers’ operational decisions (e.g. speed, acceleration, and location) while 
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V2I communications can provide detailed information about road conditions, weather condition 
along other traffic management control decisions (Talebpour and Mahmassani 2016).  
 
Automation in road transport is defined as systems that are able to perform “part or all of the 
Dynamic Driving Task” (all of the real-time operational and tactical functions required to operate a 
vehicle in on-road traffic) “on a sustained basis” (Alonso Raposo et al. 2019, SAE International, 
2016). Different levels of automation are distinguished, depending on the degree of responsibility 
given to the system or the driver/user. The AUTOPILOT project deals with high level automation in 
restricted ODDs (operational design domain). 
 
The term “connectivity” is used to refer to use of technologies, which enable road vehicles to 
communicate with each other and/or with the roadside infrastructure, such as traffic signals (Alonso 
Raposo et al. 2019). Connectivity enables the concept of C-ITS (cooperative intelligent transport 
systems) and is linked with vehicle automation. According to the European Commission (2016), 
connectivity, cooperation and automation are complementary technologies that reinforce each 
other and can over time merge completely. 
 
Combined together with two other major ongoing trends in transportation (decarbonisation and 
sharing, Alonso Raposo et al. 2019), automation and connectivity are expected to lead to radical 
transformation of the road transport system, as interplay and integration  between the four areas 
has a reinforcing effect (Alonso Raposo et al. 2019). While decarbonisation is not explicitly addressed 
in AUTOPILOT, vehicle sharing is a key part in some of the AD modes piloted. 
 
Different scenarios of introducing automated driving on the market can be defined. Fraedrich et al. 
(2015) discuss three general transition pathways to fully automated driving – evolutionary further  
development of driver assistance mainly in private vehicles, revolution of personal mobility due to 
raising market share of mobility and vehicles on demand, and a transformation of personal mobility 
combining the advantages of personal mobility and public transport. The use of IoT might progress 
automated driving in all three scenarios. The use cases tested in AUTOPILOT refer to the first two 
scenarios – first, automation in future private vehicles, and second, enabling flexible car –and 
ridesharing concepts using IoT and automation. Hence, considering impact of automation in 
personal mobility in the quality of life evaluation of the project, potential and challenges related to 
the implementation of the tested services in the context of private or shared fleet will be addressed.  
 
The focus of AUTOPILOT is automated driving with IoT-enabled connectivity between vehicles or 
between vehicles and the infrastructure, on passenger cars. The AD modes addressed represent a 
high level of automation, but are limited in time and space. Technical details related to the 
deployment and implementation of the AD modes are not addressed in this work. For quality of life 
assessment, it is assumed that the AD modes are widely in use and that both the systems and the 
connectivity via IoT work as intended. 

1.3.3 Quality of life 

In this assessment, quality of life is studied from a societal rather than an individual perspective. 
However, even if the perspective is societal it is limited - the focus is on impacts coming from 
changes in the transport system with IoT and automation. In this context, societal quality of life is 
considered to be formed by the impact areas Health (morbidity and mortality), Individual quality of 
life (well-being) and Equity. These implications of AD modes on quality of life are formed by changes 
to the impact areas of personal mobility, traffic safety, traffic efficiency and the environment. 
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2 Objectives and scope 

AVs are a complex and multi-faceted issue affecting population health and wellbeing (Dean et al. 
2019). Despite extensive ongoing work around AV and large attention from researchers and policy 
makers among others, there is a lack of knowledge on the societal impacts of AV (Dean et al. 2019, 
Milakis et al. 2017). This study aims to contribute to this knowledge gap by examining the most 
important impact mechanisms leading to societal impacts. 
 
Research questions define the objectives for quality of life assessment. Research questions for 
evaluation were formulated at the beginning of the project (Netten et al. 2018). The objective of the 
AUTOPILOT project is to explore how IoT can accelerate, enhance and enable automated driving. 
Due to many uncertainties around the topic of automated driving and IoT, the quality of life impact 
assessment takes an explorative approach: Rather than trying to produce estimations of quantitative 
impacts, which would rely on many uncertainties and assumptions, the aim is to identify and 
describe the most relevant impact mechanisms through which IoT could enhance automated driving 
and provide some initial estimates on direction and level (small/large) of changes. 

The main objectives of the quality of life assessment are to: 

 Explore how IoT in automated driving meets personal mobility needs 

 Explore the improvements in transport system efficiency with various penetration rates of 
IoT devices and automated driving vehicles.  

 Explore the contribution of AD in IoT to traffic safety improvements 

 Explore the contribution of AD and IoT to citizens’ health, well-being and equity 

The mechanisms how IoT could accelerate, enhance or enable the development, functionalities, 
performance and benefits of automated driving functions and services are studied.  
 
The impact assessment process starts by the definition of the function descriptions for each assessed 
AD mode. These descriptions are required for the identification of expected user reactions and 
impacts and they focus on a user point of view. This means that the implemented technological 
details are not relevant as such, but only the functionalities and features that the users see and 
experience. In addition, any restrictions related to the performance of the function should be 
known. The implementations of use cases differ somewhat between different pilot sites. Therefore, 
to be able to combine results and get a broader perspective, the individual descriptions from 
different pilot sites are combined into one “general function”, according to their basic functionality 
or purpose. These are described and explained more in detail in chapter 3.4.  
 
Both a top-down approach starting from the impact areas encompassing quality of life as well as a 
bottom-up approach, starting from the piloted AD modes, were taken in the assessment. The 
research questions formulated for QoL impacts in AUTOPILOT have a more explorative character. 
 
Compared to ADAS, AD impacts are also estimated to be more far-reaching. Therefore it is important 
to distinguish between the top-down and bottom-up –approaches, trying on the one hand to be as 
precise and detailed as possible, but on the other hand not losing sight of the wider impacts that 
automation and IoT may bring. 
 
The purpose of the assessment was to cover both direct and indirect impacts, keeping in mind that 
the societal and individual goals may be conflicting.  
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3 Methodology 

3.1 Impact assessment framework  

The methodology of this work is based to a large part on the impact assessment framework that was 
formed by the Trilateral ART WG (the Trilateral Working Group on Automation in Road 
Transportation). The ART WG was established in 2012 as a cooperation between the European 
Union, USA and Japan, and it aims to address the complex impacts of AV. A sub-group for impact 
assessment was established in 2015 with the aim to harmonise field tests approaches to achieve 
complementary evaluation worldwide. 
 
This subgroup has looked at potential impact mechanisms, through which AD is expected to impact 
our lives, with the aim to cover both direct and indirect impacts. These impact mechanisms have 
been visualised in impact path frameworks for the areas traffic safety, network efficiency, emissions 
and use of materials, personal mobility and quality of life, equity and health. (Note that quality of life 
is considered as a narrower concept in the work of the ART WG. As stated earlier, the AUTOPILOT 
study takes a broader view on quality of life.) The impact mechanism framework has been further 
elaborated by Innamaa (2019), and this updated version forms the basis for quality of life evaluation 
in AUTOPILOT as described in this report. This framework was chosen because it provides to the 
knowledge of the authors the most comprehensive picture of potential impacts of automated 
driving on the transport system and society, showing also the potential impact mechanisms and 
pathways leading to these impacts.  
 
The framework was applied to the five AD modes tested in the AUTOPILOT project. This approach, 
using the assessment framework as a basis, ensured that the potential impacts were considered 
systematically, including different potential impact mechanisms and both direct and indirect 
impacts. 
 
The impact assessment framework shown in Figure 1 consists of four main blocks: 
 
Block 1: Forming the Use of AD: Acceptance and Transport system 
Block 2: Forming Mileage per mode: Vehicle operations, AD user, Quality of travel, Transport 

offering, Driving quality, and Behaviour and skills 
Block 3: Forming the impacts on the transport system level: Safety, Efficiency, Infrastructure, 

Environment, Travel behaviour and Land use 
Block 4: Based on all previous areas, forming the impacts on societal Quality of Life: Public 

health, (Individual) quality of life, and Equity 
 
The Block 2 Mileage per mode is in the main focus of this study, as it determines the scope and size 
of impacts on personal mobility, traffic safety and efficiency and the environment, and therefore the 
implications of AD and IoT on societal quality of life.  
Block 1 Use of AD is not explicitly considered, as this relates to the uptake, acceptance and 
availability of the AD modes, which in this analysis are considered already given. Block 3 Impacts 
regards the expected impacts of the AD modes on the transport system level. These are formed by 
changes to Block 2. Finally, implications on societal Quality of life are considered in Block 4. 
 
A detailed description of the mechanisms of the framework can be found in Annex 1.
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Figure 1 – Impact pathways for automated driving (Innamaa et al. 2018, Innamaa 2019). Modified.
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3.2 Main steps of methodology 

The methodology for systematic assessment of potential impacts of CAD, based on the piloted AD 
modes in AUTOPILOT, included the following six steps: 
 

Step 1: Mapping of mechanisms for the impact areas personal mobility, traffic safety and 
efficiency & environment to the impact pathways figure. The mapping was done based 
on previous work, where available: 

- Personal mobility: TeleFOT mobility model (Innamaa et al. 2013), expert 
workshop 

- Traffic safety: Impact mechanisms (Kulmala 2010, Innamaa et al. 2018), expert 
workshop 

- Efficiency & Environment: literature, expert workshop 
 

Step 2: Mapping of mechanisms where IoT is expected to have an effect, per AD mode, when 
compared to the baseline, automated driving without connectivity (IoT). 
 

Step 3: Merging of Step 1 and Step 2 results to find the relevant impact mechanisms of IoT for 
each AD mode and impact area 
 

Step 4: Collecting evidence on the potential impacts of CAD on the considered impact areas 
through the available data sources, including pilot tests, other evaluation tasks of the 
project, stakeholders, experts and literature. 
 

Step 5: Integration of the collected information from different available sources (step 4) with 
the results from step 3 to identify the most relevant impact mechanisms and potential 
impact directions. 
 

Step 6: Defining general implications of CAD on societal quality of life based on the results per 
AD mode. 
 

 
Most of the work in Steps 1–6 was carried out in expert workshops. In Step 4, all available kinds of 
information from the pilot tests, stakeholder interviews as well as relevant literature was collected 
for each of the mechanisms described in Block 2 of Figure 1.  
 
For each of the boxes in Figure 1, the different kinds of information that was available were 
determined. The main information source was literature, such as reviews and expert assessment. 
The main studies considered were carried out by the JRC (Alonso Raposo et al. 2019) and within the 
CEDR funded MANTRA project (Penttinen et al. 2019), and the EU funded CARTRE project (Rämä et 
al. 2018). In addition, data from the AUTOPILOT online questionnaire about user acceptance, user 
surveys within the pilot tests as well as focus groups and stakeholder and expert interviews and 
workshops was used. Further, system dynamic modelling of impact pathways provided a way to 
extend the assessment framework by modelling causal loops for certain scenarios. The strong link to 
ongoing work by expert groups was considered helpful because of the complexity and uncertainties 
in the field of automated driving. 
 
In transport operations, three main policy objectives are increasing efficiency, lowering 
environmental impact and improving traffic safety (Vreeswijk and Blokpoel 2013). These objectives 
can be understood as minimising travel times, fuel consumption, CO2 emissions and accidents. There 
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are however conflicts between these areas, and no ideal combination of measures results in an 
optimal situation for all three objectives (Wismans 2012). Efficiency and environmental impacts tend 
to be aligned with each other, as are environmental and safety impacts, but some impacts may also 
be opposed to each other, efficiency and traffic safety impacts in particular. As data on emissions is 
not easily obtained, efficiency indicators (such as travel time) can be used as surrogate indicators. 
 
It is recognised that there are overlaps and interactions between the different boxes of the 
framework. However, for reasons of simplicity and to avoid over-complication each box was 
considered one at a time and, for the impact analysis on safety, efficiency, environment and 
personal mobility, pairwise. 
 
Several assumptions were made in the assessment. The IoT is assumed to be in place and working, 
and IoT based AUTOPILOT services are assumed to be used in AVs. The baseline used in the 
assessment is autonomous (non-connected) driving (SAE level 4) or, for the automated valet parking 
service, automated parking with user supervision, where the user needs to assign a free parking 
space and supervise the parking process. 
 

3.3 Considered impact areas 

3.3.1 Personal mobility 

The term personal mobility describes the travel behaviour (and the reasons behind it) of individuals, 
including choice of destination and travel mode, to analyse the travel demand in a population on an 
aggregated level. Understanding, modelling and forecasting travel demand is an important research 
area supporting transportation planning and the development of policy measures in transportation 
(Ortúzar and Willumsen, 2011). Theoretical approaches and empirical work aiming to understand 
personal mobility and mobility-related needs usually look into determinants of mode choices. These 
can be divided into three groups: individual characteristics (e.g., age, gender, car availability, 
attitudes), journey characteristics (e.g. trip purpose) and alternative-specific characteristics which 
can be divided into quantitative factors, such as travel time and cost, and qualitative characteristics, 
such as comfort, convenience and demand of the driving task (Ortúzar and Willumsen, 2011).  
 
Another way to structure mobility impact assessment is proposed by the mobility model (Innamaa et 
al. 2013, see Figure 2), which is a theoretical tool built to identify and account for the relevant 
factors related to mobility.  The model proposes three main areas for personal mobility: amount of 
travel, travel patterns and journey quality, which are further divided into more specific topics. The 
model specifies personal variables that affect personal mobility choices, travel decision-making 
variables, travel characteristics followed by decisions and their relationships. The tool also helps in 
determining, which specific aspects need to be measured or evaluated in order to analyse mobility 
impacts, and can help with data analysis. The mobility model was originally developed for the 
TeleFOT project (Innamaa et al. 2013) and used e.g. in the projects DriveC2X (Malone et al. 2014) 
and TEAM (Aittoniemi et al. 2016). The main parts of the mobility model are highlighted in the 
framework picture in Figure 3. 
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Potential impacts on personal mobility were derived from user tests, focus groups, literature and 
expert interviews. 
 
In the interpretation of impacts from a personal mobility point of view, the basic principles of  
Innamaa et al. (2013) were applied: 
 

- Mobility improves as the number of journeys increases. 
- Mobility improves as the length of journeys measured in distance or as duration decreases 

(personal efficiency improves) 
- Change in used modes either improves or reduces mobility based on user preference 

(whether they favour a car, public transport, etc.). 
- Route choice either improves or deteriorates mobility based on user preferences (whether 

they favour a motorway, rural roads, etc.). It can be assumed that if the user is (voluntarily) 
willing to change route, he/she considers the new route better. 

- Mobility improves as management of time budget for travelling improves, e.g. as departure 
time of commuting is shifted later. 

- Mobility improves as travelling in adverse conditions such as darkness increases. 
- Mobility improves as quality improves in terms of less stress and uncertainty or a better 

feeling of safety or comfort 
 

 
Figure 2 – Mobility model (Innamaa et al. 2013) 
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Figure 3 – Impact paths of automated driving for the impact area Mobility. 

3.3.2 Traffic safety 

Traffic safety can be described in terms of the number of accidents, which is related to three main 
factors: exposure, risk and consequence (Nilsson 2004). Exposure represents the amount of activity 
where an accident can occur, risk is the expected number of accidents per unit of exposure and 
consequence is the severity of the accident. Traffic safety can, therefore, be influenced by a change 
in any of the three dimensions. Exposure is related to the amount of travel (number and duration of 
trips), while risk represents the difference in accident risk in different road environments or with 
different travel modes. 
 
Innamaa et al. (2018) developed a high-level impact assessment framework for harmonising 
evaluation of automated vehicle pilots. This evaluation framework is based on the nine impact 
mechanisms proposed by Kulmala (2010) for systematic ex-ante evaluation of the safety impacts of 
intelligent transport systems (ITS; see Table 2). Both the engineering and behavioural adaptation 
effects are covered, relating to all three dimensions of traffic safety (exposure, risk and 
consequence). Nine impact mechanisms, which emphasise the direct and indirect modification of 
both user and non-user behaviour, were proposed by Kulmala and adapted for automated driving by 
Innamaa et al. (2018). It is important to be noted that the framework includes also changes in 
exposure i.e. the mobility of road users (Innamaa et al. 2018).  
 
The impact mechanisms for traffic safety are shown in the assessment framework in Figure 4. 
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Table 2 – Impact mechanisms for systematic ex-ante evaluation of ITS safety impacts. 

Safety dimension Impact mechanism 

Risk Direct modification of the driving task, drive behaviour or travel 
experience 

Direct influence by physical and/or digital infrastructure 

Indirect modification of AV user behaviour  

Indirect modification of non-user behaviour 

Modification of interaction between AVs and other road-users 

Exposure  Modification of exposure /amount of travel 

Modification of mode choice 

Modification of route choice  

Consequence Modification of consequences due to different vehicle design 

 
 

 
Figure 4 – Impact paths of automated driving for the impact area Safety. 

3.3.3 Traffic efficiency and environment 

Traffic efficiency describes traffic performance on a network. Efficiency can be measured by 
different indicators, such as capacity of a lane, link or intersection, throughput or traffic volume, 
travel time, delay time and travel time reliability (Innamaa et al. 2018). Traffic efficiency is directly 
affected by the driving style, e.g. headways kept between vehicles, but also indirectly through 
mobility behaviour (such as amount of travel, mode choice, routes and destination choices) and 
traffic safety, due to a potential reduction of delays caused by incidents. The impact paths for the 
impact area efficiency and environment are highlighted in Figure 5. 
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Traffic congestion is an increasing problem in cities around the world, causing harmful effects on the 
citizens’ quality of life, for example in time losses and pollution (reference). Connected automated 
driving has potential for harmonising traffic flow and optimising the transport system (reference), 
for example by allowing for better anticipation of events and a smoother driving style. For example, 
vehicle automation can help keep headways and other driving behaviour more constant and reduce 
fluctuations caused by human driving behaviour, thus reducing the amount of disturbances and 
increasing road capacity as well as lowering emissions. 
 
So far, the research on impacts of automated driving has been mostly limited to simulation studies 
and controlled field tests, with mixed results. The network efficiency impacts are mainly dependent 
on the level of automation and cooperation and the penetration rates (Milakis et al. 2017). Many of 
the studies concern motorways, and the potential benefits for urban centres are even less clear, as 
they are characterised by short distances between intersections and the presence of many different 
types of road users (POLIS 2018). 

 
Figure 5 – Impact paths of automated driving for the impact area Efficiency and Environment. 

3.3.4 Individual quality of life and well-being 

Individual quality of life is a broad ranging concept affected in a complex way by the person's 
physical health, psychological state, level of independence, social relationships, and personal beliefs 
combined with their relationship to salient features of their environment. Further, individual quality 
of life can be seen as an overarching concept that covers all aspects of a person's life, which 
includes, amongst others, physical well-being, psychological well-being, financial well-being and 
social well-being. Physical well-being includes e.g. the fitness, energy and occupational performance 
indicators, whereas psychological well-being include mental health, self-perspection and mood 
indicators. Social well-being consists of family relationships, friendships, and level of community 
involment. And finally, economical well-being covers the financial resources and access to job 
opportunities and services. The World Health Organization (WHO 1997) states that quality of life is 
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individuals' perception of their position in life in the context of the culture and value systems in 
which they live and in relation to their goals, expectations, standards and concerns. 
 
The task of driving is a complicated activity, one that is undergoing a transformation as a result of 
the rise of IoT and Automated Vehicles. To this end, it is essential to understand, measure and keep 
track of drivers’ well-being and the factors that affect it throughout the full lifecycle of the upcoming 
transformation.  
 
Starting with the definition of well-being, it can be perceived as “how people feel and how they 
function, both on a personal and a social level, and how they evaluate their lives as a whole”. To 
break this down, how people feel refers to emotions such as happiness or anxiety.  
 
The World Health Organization’s definition of health clearly underscores the importance of well-
being: “Health is a state of complete physical, mental and social well-being and not merely the 
absence of disease or infirmity.” Well-being is a broad concept that entails multiple dimensions, 
which can essentially be divided into two large domains: objective and subjective well-being. As a 
result, various scales and indices have been developed to measure both domains. 
 
Well-being is generally considered a state of complete physical, mental and social wellbeing and not 
merely the absence of disease or infirmity. The topic has been extensively researched in several 
areas of psychology, ranging from hedonic psychology field (Kahneman et al. 1999), economics of 
happiness (Bruni and Porta 2007) and positive psychology (Seligman 2002).  Subjective and 
measurable well-being indicators have been widely used, as being very relevant to research and, 
consequently, there are numerous such surveys conducted across the world (e.g. World Values 
Survey 2009).  
 
A number of factors affect the well-being of drivers, such as stress, fatigue and lone working.  In 
terms of stress, it affects drivers’ ability to make decisions and react quickly or appropriately as well 
as affecting their overall standard of driving. Fatigue and sleep deprivation is also measured to be 
the cause of around 20% of incidents on the UK’s roads while lone working of professional drivers 
can have an impact on their mental health and well-being. The effects of stress, regardless of the 
cause, can leave drivers prone to make irrational decisions and suffer road rage. 
 
Lee and Sener (2016) have indentified four classes of QoL definitions: (1) objective, (2) subjective, (3) 
combination of objective and subjective, and (4) domain-spefic. They emphasise that quality of life is 
an inherently individualised concept. Thus, objective measures fail to reflect individuals’ perceptions, 
but serve the purpose of understanding societal impacts. The subjective approach to quality of life 
attempts to encompass life satisfaction and feelings of positive and negative affects to provide more 
individual measures. However, attempts to define QoL solely through subjective indicators have 
their weakness too, as subjective indicators fail to capture one’s life state as a whole. For example, 
Felce and Perry (1995) have stated that human welfare is not entirely reliant on personal satisfaction 
because it can not alone represent the individuals’ circumstances. Nowadays, the state of art is that 
quality of life should be interpreted as combination of these two – objective and subjective nature of 
the QoL. Quality of life can also be approached under different domains. Domain-specific QoL 
definitions are not as universal as the previous, and on this account they can be more useful in their 
respective fields by offering more precice outline in the ways QoL is interpreted (Atkinson 2013). 
 
There are some studies on causal relationships between transport and quality of life to be found, but 
there is no overarching definition and the approaches vary strongly. One way to approach transport 
related quality of life is to divide it into access and availability, environment, sustainable transport, 
personal safety and transport costs, which together represent the journey quality (Carse 2011). 



 
 

24 

 
Another way to approach individual quality of life under the domain of transport is Lee and Sener’s 
(2016) model for transportation and quality of life, which concludes built environment, mobility and 
accessibility, and vehicle traffic as the main determinants for transport related quality of life. The 
model presents both subjective and objective determinants of individuals’ perceived quality of life, 
related to different areas of well-being, under the domain of transportation. Figure 6 presents the 
linkages between different categories of well-being according to Lee and Sener (2016).  
 

 
Figure 6  – Transportation and quality of life. Adapted from Lee and Sener 2016. 

 
Personal mobility in general is highly correlated with well-being and contributes to individual Quality 
of Life. However, there is less research specific to the area of transport, and well-being is often 
defined with reference to the study objectives and research hypotheses in relation to a utility or 
behavioural choice model. The relationship does not seem to be linear as personal transportation 
can have positive (e.g. comfort, increase social contacts, transfer to work) and negative effects (e.g. 
stress, tiredness) on well-being, as well as pose risks to well-being (e.g. accidents, air pollution, 
decreased use of active travel modes).  
 
On one hand, wellbeing is expected to improve with AV because the value of time spent in transport 
will change. Passengers will be able to engage in their preferred activities, ones they cannot get 
involved right now (e.g. work, sleep, watch a movie). However, in a survey performed by Cyganski 
and colleagues (2015) in Germany, respondents stated that the activities they will be involved in 
during automated driving will be mostly window gazing, listening to music and talking on the phone; 
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which are actually secondary activities that they already engage whilst driving. Hence, results are not 
so straightforward because the automated driving paradigm shift offers a disruption to a major daily 
activity, such as driving. The positive effects, hence, are not sot immediate and easy to identify, as 
they were theoretically expected to be. However, the effect on user groups that had not access to 
driving until now (e.g. older drivers, individuals with disability) might be a more direct measure of 
increase in wellbeing for these groups.  
 
On the other hand, research warns that increase in VKT because of the availability of AVs could have 
detrimental effects on public health because they could lead to physical inactivity (Clark et al. 2016; 
Fagnant et al. 2015) and more people could choose AVs over public transport (Thomopoulos and 
Givoni, 2015). A solution to this problem is not easy but targeting shared mobility options over 
private ones might be a long-term mitigation strategy (Diels et al. 2017).  

3.3.5 Health 

Transportation and health are closely interlinked, and this link is recognised as an important issue in 
policy making, for example through Vision Zero, UN Sustainable development goals, and walkable 
communities (Dean et al. 2019). However, despite much research on AV being done, there is little 
literature examining the potential broader health impacts. Health issues in connection with AV have 
been focused on improving road safety, while more general social impacts have included improving 
independent mobility for populations unable to drive, such as elders. These issues are important, but 
do not include the broad range of potential positive and negative impacts that AV can have on 
health (Dean et al. 2019). Further, due to lack of research, most literature on societal impacts of AV 
is speculative. 
 
The role of AVs in public health is not clear and understood and findings mostly result from surveys 
administered to general public focussing on respondents’ opinions and imagination (Kyriakidis et al. 
2015). There is limited research presenting results from actual use because the effect on wellbeing 
and users’ health requires a long-term use and longitudinal assessment of relevant indicators (e.g. 
stress, comfort, happiness, pleasure). Literature suggests that AV have a clear and direct role on 
health, especially related to reductions of road-related injuries and fatalities (Dean et al. 2019). 
Beyond this direct impact through road safety, there is a lack of consensus on the AV impacts on 
human health. The US DOT has recognised five pathways for the links between transport and health 
(Dean et al. 2019): active transportation, road safety, air quality, connectivity (accessibility), and 
equity.  
 
Important measures when discussing the health impacts of transportation are mortality and 
morbidity (Mäkinen 2019). Mortality is measures as years of life lost and potential years of life lost. 
They are easier to quantify than morbidity, which measures years lived with disability and disability-
adjusted life years. The mortality measure gives more weight to deaths that occur among younger 
people as they were expected to have more life years ahead of them. Morbidity aims to quantify the 
burden of living with a disease or disability. Quality of life can be measured as quality-adjusted life 
years and healthy life expectancy. Literature shows positive associations between morbidity 
outcomes, premature mortality rates, stress and traffic congestion (Milakis et al. 2017). 
 
The choice between active and passive travel modes has great influence on people’s physical activity 
levels (Sallis et al. 2016). Studies indicate that provision of specific infrastructure for pedestrians and 
cyclists is associated with higher levels of use of these modes, and therefore with health benefits 
(Milakis et al. 2017). On the other hand, increase in vehicle use through AVs can have negative 
impacts, if use of active transport modes and therefore physical activity levels decrease. 
 
Active travel modes help in reaching recommendations for physical activity goals (Schalkwyk and 
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Mindell 2018). While not an active mode itself, public transport use typically involves walking or 
cycling to and from the nearest stations. Transport systems where use of private vehicles and other 
motorised vehicles is prioritised, lead to increased exposure to related harms such as air pollution, 
noise pollution, accidents, community severance, poor mental health and reduced social interaction 
(Schalkwyk and Mindell 2018). The convenience of private car use does not encourage active travel 
modes, and transport policies, which centre on private vehicle use, limit the opportunities for and 
likelihood of physical activity and associated health benefits. 
 
The uncertainty and range of possible outcomes is important to consider when discussing the 
potential impacts of AV on health (Dean et al. 2019). Factors such as ownership model, fuel source 
and regulations by public and private entities play a role, and the impacts and their degree depend 
on which of these scenarios are realised. A lot of the uncertainty is due to uncertainty of how AVs 
will be implemented into the existing transport system. The most important unclear variables are 
ownership models, fuel source, government regulations and user experiences (Dean et al. 2019). 
There is potential both to encourage active transportation in combination with AVs and to 
discourage it completely. 

3.3.6 Equity and accessibility 

Transportation can have significant social impacts (Milakis et al. 2017). Accessibility to transport 
options determines to a degree the options people have available to pursue employment, social 
interactions and leisure activities as well as access to necessary services such as health services. 
Often these factors are interlinked, and e.g. people from lower income groups live in areas with 
lower accessibility, therefore creating a vicious circle.  
 
Findings from literature suggest that overall the social, behavioural and societal aspects of AV are 
under-researched (Cavoli et al. 2017). It is known that AV introduction can have positive and 
negative implications for accessibility (Milakis et al. 2017). However, those implications largely 
depend on the ways AV are deployed and implemented. If vehicles will continue to be mostly 
privately owned as it is today, the first AV are likely to be expensive, which limits benefits from AV, 
such as increased comfort and safety, to wealthier citizens. If increased AV use leads to less use of 
public transport, the level of service and thus accessibility for people in lower socio-economic groups 
may decrease further. On the other hand, if AV are mostly in shared use and serve as a way to reach 
stations for high capacity public transport, also the lower income groups may benefit. Impacts can 
be far-reaching: conversion of redundant road and parking space to better VRU infrastructure and 
more housing can increase housing affordability. 
 

3.4 General AD modes for QoL assessment 

3.4.1 Purpose and scope of general AD modes 

In an expert workshop the function descriptions were developed and needs of potential users were 
mapped to the specific problems that the introduced AD modes could address.  
 
In contrast to other evaluation task in the project, the quality of life task takes a wider scope and 
does not solely focus on evaluating the AUTOPILOT pilot tests themselves, but rather aims at 
assessing potential impacts of AD and IoT on a more general level. 
 
As the AD modes developed and piloted in AUTOPILOT are of a rather specific nature and their 
implementation differed across the pilot sites, the quality of life introduced considered more general 
AD mode descriptions. These allowed to better illustrate the targeted services from and end user 
point of view and to show the commonalities between different implementations of the services.  
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Of the five differentiated general AD modes in the QoL assessment, three (both Urban Driving – 
Signalised intersection and VRU mobile detection, as well as Highway Pilot – Hazard Detection) have 
a very limited focus in space and time, addressing a specific situation or event. Thus, when assessing 
their potential impacts on the driving procedure as a whole, their impact potential is limited. It is 
also not assumed that those AD modes have potential to influence the travel behaviour of users. 
AVP addresses a specific situation as well (the parking process), but due to the importance that the 
parking process has on the whole trip, its potential impacts on mobility are more far reaching. 
Platooning is the only AD mode with a potentially longer timeframe of use – for example, the AD 
mode can be enabled and active during the whole time when driving on a motorway. 
 
As most of the AD modes tested in the AUTOPILOT pilot sites address specific locally limited issues, 
first the target user groups and their potential challenges, which the AD modes could mitigate, were 
determined to obtain a picture of the potential benefits and uses of the AD modes.  

3.4.2 Automated valet parking (AVP) 

3.4.2.1 Description 
AVP is an automated version of valet parking, which is offered as a service for example at some 
airports and hotels to relieve car users from the task of finding a parking space for their vehicle, 
perform the parking manoeuvre and walking between the parking lot and their actual destination. 
 
A vehicle with AVP uses data about the environment around the vehicle, for example through digital 
maps, positioning and information on vacant paring spots. The vehicle can use its own functions and 
sensors for this, but it can also benefit from access to IoT platforms, which can provide data acquired 
from sensors, such as parking cameras. In addition, IoT platforms can provide information on related 
services, such as booking and payment.  
 
The AVP function in AUTOPILOT can drive automatically to the parking space and carry out the actual 
parking manoeuvre. The function typically operates at low speeds and in restricted areas (dedicated 
parking spaces and garages). The function can deal with obstacles and other traffic participants on 
the parking route. If an obstacle is detected on the route (through the IoT-connection) the vehicle is 
automatically rerouted. Figure 7 includes a description of the function from a user perspective, and 
gives an overview of the IoT aspects of the function.  
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Vehicle point of view  IoT point of view 

 The user reserves a parking place, drives to 

the drop off point and orders the vehicle to 

park via the app. 

 The user gets out of the vehicle and 

continues to their appointment. Meanwhile, 

the vehicle drives by itself to park. 

 When the user is ready to drive back home, 

he or she calls the vehicle back with the app, 

and walks to the pick-up point. 

 The vehicle arrives there from the parking 

space. 

 The user gets in and drives on. 

 

  Helps enable the service and making users 

aware of it 

 Supervises the parking area and find free 

parking spaces as well as detect obstacles. 

 Allows positioning in indoor parking 

garages 

 Facilitates contact to the backend, where 

optimal parking spaces are determined and 

reserved, and route guidance for the vehicle 

to the parking space is calculated. 

 

 

Figure 7 – Description of general AVP function. 

3.4.2.2 Potential users, needs and problems 
Finding a free parking space and manoeuvring the car into narrow spaces are stressful tasks for 
many drivers. Especially in city centres parking spaces are scarce and may be located in narrow 
parking garages. Many crashes occur in parking lots, and although they rarely lead to injuries, they 
pose economical loss and time loss for their owners.  Further, people may not feel safe when using 
the garages for example late at night. In addition, it has been estimated that looking for parking 
spaces causes a considerable amount of traffic in cities.  
 
AVP could tackle and even remove these problems by taking care of both tasks: finding a free 
parking space and manoeuvring the vehicle into it. It can save time for the driver and improve travel 
time reliability. Potential users are all car drivers, especially those less sure of their driving and 
parking skills. Other potential users are parking management, city planners, company/campus 
managers, event managers, shopping centres and car sharing services. 
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In addition to the intended, the indirect and unintended effects associated with AVP are identified 
and considered. Due to its convenience, it may increase car use and decrease use of public 
transport, especially in city centres. This may lead to increased congestion in cities, if the number of 
vehicles increases substantially, offsetting the gains of faster finding of parking space. 
Other potential problems caused are empty spaces without people (desolation), which may arise if 
there are large spaces reserved only for the AVP vehicles. 

3.4.3 Urban Driving – signalised intersection 

3.4.3.1 Description 
Urban areas are challenging environments for automated driving due to the many different road 
users and possible situations, which need to be handled. 
 
The Urban driving – Signalised intersection function enables a vehicle to turn automatically from the 
main road to a side road at a signalised intersection in an urban area. The vehicle can drive 
automatically according to the traffic light status. In case a VRU is simultaneously crossing the side 
road, the vehicle automatically yields to him or her. Figure 8 includes a description of the function 
from a user perspective, and gives an overview of the IoT aspects of the function. 
 

 
 
User experience  IoT-aspects 

 The vehicle drives automatically and 

approaches traffic lights 

 The vehicle adjusts its speed according to 

the traffic light status and VRU presence at 

the zebra crossing on the side road  

o VRU present: vehicle is warned 

about them, lets them cross and 

turns to the side road  

o No VRU present: vehicle turns to 

the side road   

 

  Information about traffic light phase sent to 

vehicle (time to green / remaining green 

time) 

 Vehicle can indicate that it is approaching 

and the traffic light will adapt 

 VRU presence detected by camera and 

information sent to vehicle 

 

 

Figure 8 – Description of AD mode Urban driving – signalised intersection.  

3.4.3.2 Potential users, needs and problems 
Traffic signal controlled intersections lead to a driving behaviour with a lot of braking and 
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accelerating, and often also stops. In high traffic demand conditions this can lead to congestion and 
delays. From an environmental perspective, uneven travel speeds with braking and accelerating lead 
to more emissions, which is detrimental to air quality in cities. Intersections are also prone to 
accidents, especially concerning VRU as there are many conflicting paths.  
 
Potential users and beneficiaries of the signalised intersection AD mode are drivers, especially 
elderly, local (regular) and commercial drivers, less experienced drivers and non-locals, bus/lorry 
drivers, emergency vehicle drivers. Also other road users such as VRU can benefit if the AD mode 
allows them to be better detected. Other benefiting stakeholders include delivery companies, local 
authorities, service providers, traffic management authorities, driving instructors, schools and public 
transport. 

3.4.4 Urban Driving – VRU mobile device detection 

3.4.4.1 Description 
The function provides information to the vehicle about nearby VRUs or groups of VRUs, enabling for 
example rerouting in case of large crowds.  VRU are detected through their mobile phones. In case a 
VRU is stepping on the road, the vehicle automatically brakes. Figure 9 includes a description of the 
function from a user perspective, and gives an overview of the IoT aspects of the function. 
 
 

 
 
User experience  IoT-aspects 

 The vehicle drives automatically in an urban 

environment and receives continuously 

information from the IoT platform / The 

vehicle drives in an urban environment and 

receives continuously information from the 

IoT platform 

 The vehicle is warned about nearby VRU’s 

and adjust its behaviour accordingly / The 

driver is warned about nearby VRU’s  

 

  VRU presence detected by VRU’s mobile 

devices and information sent to vehicle 

 

 

Figure 9 – Description of AD mode Urban driving – VRU mobile device detection 

3.4.4.2 Potential users, needs and problems 
The problems addressed by this AD mode are detecting VRU that would otherwise not easily be 
detected by human drivers or vehicle sensors. Detecting large groups of VRU (crowds) in advance 
allows for rerouting. Upcoming traffic situations can be better anticipated and faster reacted upon. 
Harsh braking can be avoided by giving way more flexibly, which increases comfort and safety. 
 
Potential users identified for the AD mode were passenger car drivers, AV itself (enhancement of 
sensors), bus and truck drivers, campus site managers and other local authorities and 
pedestrians/VRU. 
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3.4.5 Highway Pilot – Hazard detection 

3.4.5.1 Description 
The Highway Pilot AD mode explores use of IoT in context of road hazards. The term “road hazard” 
can include a wide range of events and situations (Mathews et al. 2019), for example road defects 
(potholes), stationary or slowly moving vehicles, road works, fallen objects, weather-related road 
changes. 
Information from sensors on different IoT devices (in particular roadside cameras and other vehicles) 
is merged in a cloud service to locate and characterise road hazards (Schreiner et al. 2019). 
 
The vehicle drives in automated mode on a highway, and the function warns the vehicle about 
upcoming obstacles or other hazards. If an obstacle is detected on the vehicle’s path, the vehicle 
automatically adjusts its speed and the vehicle takes action to avoid the hazard. Figure 10 includes a 
description of the function from a user perspective, and gives an overview of the IoT aspects of the 
function. 
 
User experience  IoT-aspects 

 The vehicle drives automatically and 

receives continuously information from the 

IoT platform 

o Obstacle: the vehicle adjusts its 

speed (steering, lane change)  

 Proactive driving 

 

  Road side unit (and other connected objects) 

detects hazards and information is sent to 

vehicle (extended sensing through IoT) 

 Cloud service merges sensor information 

from different IoT devices to locate and 

characterise hazards 

 

 
Figure 10 – Description of AD mode Highway Pilot – Hazard detection. 

3.4.5.2 Potential users, needs and problems 
The problems identified that could be reduced with this AD mode include property damages due to 
potholes. Faster detection of hazards with IoT can improve rapid maintenance of the roads. Harsh 
braking due to potholes or other obstacles on the road can be reduced, which improves traffic safety 
and efficiency. More anticipative driving behaviour can be achieved. 
 
The potential users of this service include all types of drivers as well as fleet companies and traffic 
management centres. 

3.4.6 Platooning 

3.4.6.1 Description 
Platooning describes a scenario where connected vehicles follow a leading vehicle’s path with a 
small following distance. The first vehicle can be manually driven, and the followers drive in 
automated mode. Platooning requires vehicles to use inter-vehicle communications (Mathews et al. 
2019), so that manoeuvres of other vehicles can be anticipated and acted on. 
 
AUTOPILOT demonstrated two use cases of platooning: on highways as well as in urban areas for 
allowing car rebalancing of shared vehicles between sharing stations. The QoL assessment only 
concerns the highway case. 
 
The vehicles form a platoon where the leader drives manually and the following vehicles (1–4 
vehicles) drive in automated mode. Figure 11 includes a description of the function from a user 
perspective, and gives an overview of the IoT aspects of the function. 
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User experience  IoT-aspects 

 The user reserves a platooning place and 

drives to the meeting point  

 The vehicles form a platoon where the 

leader drives manually and the followers (1–

4 vehicles) drive automatically 

 During the platooning the vehicles/drivers 

communicate with each other (setting the 

speed and steering) 

 At the end, the vehicle dissolve the platoon 

and the user drives on 

  Platoon formation and driving 

 V2V communication 

 V2I communication with traffic lights 

 Integration of platooning into mobility 

service concept 

 

 

Figure 11 – Description of AD mode Platooning. 

3.4.6.2 Potential users, needs and problems 
The platooning service can help with time management. For example when using the platooning 
service instead of one’s own car when traveling to a business meeting, the travel time can be used to 
prepare for the meeting. 
 
Potential users are especially the working population, for example business travellers. Also people 
with reduced mobility, or elderly who do not feel confident driving on motorways, may benefit. 

3.4.7 Baseline used in the assessment 

The potential impacts of IoT on AD are assessed by comparing connected automated driving with 
non-connected autonomous driving for each general AD mode. Table 3 shows the general AD modes 
used in QoL evaluation and the baseline they are compared with. The objective of the assessment is 
to explore the role of IoT for automated driving. Therefore, in order to assess the potential of IoT for 
AD, the baseline was chosen to represent as similar a service as possible, but without the 
connectivity. In the baselines chosen the vehicle is driving autonomously relying on its sensors only. 
 
Impacts depend on level of maturity of the baseline AV function (e.g. cautious or aggressive driving 
style, capability to detect and react to objects, incidents etc.). Relatively cautious AV behaviour is 
assumed in the baseline. AD with IoT is assumed to work well (no false negatives, no disturbance in 
connections, etc.). 
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Table 3 – AD modes and Baseline used in QoL assessment. 

AD mode General use case short 
description (AUTOPILOT 

AV) 

Baseline for assessment 
(autonomous AV) 

AVP  User leaves vehicle at 
drop-off point, vehicle 
finds free parking space, 
drives there and parks 

Automated parking with user 
supervision (?), user needs 
to assign parking space 

Urban driving - Signalised 
intersection  

Vehicle receives 
information on traffic 
light status and crossing 
VRUs 

Vehicle relies on own 
sensors, no advance 
information on traffic light 
status or VRUs 

Urban driving -  VRU 
mobile device detection  

Vehicle receives 
information on VRUs in 
vicinity and can reroute 

Vehicle relies on own 
sensors, no advance 
information on VRUs 

Highway Pilot - Hazard 
detection  

Vehicle receives 
information on upcoming 
hazards (e.g. potholes) 

Vehicle relies on own 
sensors, no advance 
information on hazards 

 
Platooning  

 

Following a lead vehicle 
by platooning, follower in 
automated mode 

Level 3/4 motorway pilot 
(within its ODD) 

 

3.5 Summary of methods  

Results obtained from the relevant sources were collected on specific templates (see example in 
Annex 3). The aim was to find specific information on each of the boxes of Figure 1 for each AD 
mode, but due to the general lack of available information on AD impacts, let alone tailored to 
specific AD modes, this was a challenging task. Most information was found for AVP and Platooning. 
Information on potential changes in travel behaviour (Behaviour and skills, Travel behaviour) was 
obtained with test user surveys and focus groups. 
 
In addition, several workshops were held with the members of the consortium.  
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4 Results 

In the following, the results are described for each AD mode. First, the impact mechanisms where 
IoT could have an impact are identified and then these are mapped with each of the four impact 
areas (personal mobility, wellbeing, safety and traffic efficiency and environment). Finally, the 
potential impacts of the function are estimated, mostly in qualitative terms and quantified where 
possible. 
 
While reading, it is important to keep in mind the baseline, which is autonomous (non-connected) 
driving. Therefore, changes that occur when shifting from manual driving to autonomous driving are 
not considered in the analysis. First, expected impacts of IoT on AD are described, based on the six 
impact mechanism boxes that make up Mileage per mode. Next, implications of IoT and AD on traffic 
safety, traffic efficiency and the environment, and personal mobility are described. Those 
implications are based on the data collected for each of the impact mechanism boxes and impact 
areas (Step 4). 
 

4.1 Results per AD mode  

4.1.1 AVP 

4.1.1.1 Expected impacts of IoT 
Figure 12 shows the areas of the framework (Block 2) where IoT was expected to have an impact for 
the AVP AD mode, compared to a non-connected autonomous parking system. These areas are 
elaborated below. 

 
Figure 12 – Potential impact mechanisms of IoT for AVP. (Orange coloured boxes indicate direct impacts, boxes with 

orange borders indicate more indirect or secondary impacts.) 

Vehicle operations: Compared to the baseline of autonomous parking with user supervision, 
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minor/secondary changes are expected to interaction with other vehicles and VRU, mainly due to 
their enhanced detection via IoT devices. Relatedly, the situational picture of the vehicle is expected 
to change because IoT provides information on VRU and obstacles on the route (better path finding). 
 
AD User: The user does not have to take care of the parking process at all (non-driving). The function 
eases driving, driver workload is no more an issue while parking and thereby, workload is reduced on 
the whole trip. The user does not need to park (and is not even near the vehicle during the parking) 
and therefore gets less experience with the parking task. 
 
Quality of travel: User stress is expected to reduce due to the removed need for carrying out parking 
manoeuvres. Changes are also expected regarding comfort and convenience of travel. Traveling 
reliability is improved as the time for finding a parking space does not need to be estimated or taken 
into account. Feeling of safety can be improved as the user does not need to walk in or near parking 
lots and garages.  
 
Transport offering: AVP has the potential of enabling creation of attractive new mobility services and 
enhancing benefits of car ownership for those that experience stress whilst searching for parking 
and/or performing parking manoeuvres. It can save time for all car users who may now benefit from 
being drop off directly at their destination point, thus making car ownership more attractive (and 
new mobility services less attractive). IoT can make this even more convenient if a user can call for 
their vehicle to pick up wherever they based on their mobile phone location. Vehicle availability can 
be better handled with IoT. 
 
Driving quality: Less driving errors are expected as AD with IoT may be able to carry out the parking 
procedure more precisely. Visibility is extended by the use of IoT, which can inform the vehicle of 
obstacles that are out of reach of its own sensors. 
 
Behaviour and skills: Due to its convenience, AVP may lead to an increase in the number of trips 
made. Destinations may change as it becomes easier to drive into city centres as the parking 
problem (finding a parking space) is eliminated. The choice of transport mode and timing of journeys 
may also be affected. In the long term, changes in driving skills can occur if the drivers do not need 
to use their parking skills. 
 
In the pilot test user surveys and focus groups, many participants stated experiencing stress when 
parking. Especially finding a free parking spot was considered stressful. 

4.1.1.2 Implications for safety 
Traffic safety is affected through the mechanism topics Vehicle operations, AD user, Driving quality 
and Behaviour and skills, when comparing AVP to the baseline of automated parking with user 
supervision. 
 
In vehicle operations, the situational picture of the vehicle is improved with the information received 
through IoT. 
 
For AD User, the impacts are straight forward: due to the user not needing to take care of the 
parking task. 
 
The majority of crashes related to parking involve property damages only, and the severity of parking 
crashes in form of injuries and fatalities is less prevalent. Therefore, the potential and the impacts on 
traffic safety are not expected to be very substantial.   
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4.1.1.3 Implications for Efficiency and Environment 
The parking process itself does not have substantial impacts on traffic efficiency, therefore no direct 
impacts are expected due to AVP. 
 
Regarding the environment, there can be impacts on a local scale, e.g. more emissions caused locally 
at parking garages due to more cars, but for quality of life this is considered negligible. 

4.1.1.4 Implications for Personal mobility 
Due to the improved comfort and convenience, AVP can have substantial impacts on personal 
mobility, when compared to non-connected autonomous parking. If AVP services are concentrated 
in highly frequented places with limited availability of parking spaces to date (such as city centres, 
airports, shopping centres), their attractiveness may further rise. 
 
AVP may improve personal mobility for specific user groups, such as people with reduced mobility. 
For them the service allows reassurance in reaching their destination without the need for walking a 
long distance from the parking space. 
 
In a majority privately owned scenario, overall car ownership may increase due to the multiple 
perceived benefits to the individuals. As such more space will be required for parking, even if AVP 
reduces the amount of space required for each vehicle.  
 
On the other hand, in a shared ownership scenario, integrated with a comprehensive ‘Mobility as a 
Service’ app, AVP may offer little advantage to quality of life directly to the user. For such a system 
to be efficient, operators would desire that vehicles are in constant use, so vehicles would not park 
but go straight to the next user. This would reduce the need for parking space, but could increase 
empty travelling. If sharing is majority then individual car ownership would fall, thus less vehicles on 
the road so it is uncertain the effects on congestion within the transport system. In order to ensure 
vehicles are always available for the users, a surplus supply may be required and thus AVP would be 
advantageous. 

4.1.1.5 Summary for AVP 
Figure 13 shows the expected benefits of IoT and implications for traffic safety, efficiency and 
environment and personal mobility for the AD mode AVP. 
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Figure 13 – Expected benefits of IoT and implications for traffic safety, efficiency and environment and personal mobility 

for the AD mode AVP. 

 

4.1.2 Urban driving - Signalised intersection 

4.1.2.1 Expected impacts of IoT 
Figure 14 shows the areas of the framework (Block 2) where IoT was expected to have an impact for 
the Urban driving – Signalised intersection AD mode, compared to non-connected autonomous 
driving. These areas are elaborated below. 
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Figure 14 – Potential impact mechanisms of IoT for Urban driving – Signalised intersection. (Orange coloured boxes 

indicate direct impacts, boxes with orange borders indicate more indirect or secondary impacts.) 

Vehicle operations: The Speed behaviour of vehicles is expected to change due to IoT, as the vehicle 
with this AD mode receives information on traffic light status and potential VRU wanting to cross. 
The maximum driving speed near the intersection is expected to decrease as information of speed 
limits is more precise and adherence better. Due to anticipation driving becomes smoother and 
variance of speed decreases. Interaction with other vehicles and VRU changes as VRU detection at 
intersections is improved with the IoT cameras. This also affects the situational picture of the 
vehicle. 
 
AD User: The AD user aspects are indirectly affected by IoT. There may be changes to ease of driving, 
in-car activities, workload, situation awareness and frequency of take back of control, when 
compared to non-connected automated driving, but as the scope of the use case is narrow (an 
intersection) these changes are assumed to be minor/secondary. 
 
Quality of travel: Comfort is expected to change due to different driving style of the vehicle in the 
intersection (i.e. possibly smoother driving). Stress may change due to enhanced detection of VRU. 
This may also affect the users’ feeling of safety. Minor changes are expected on use of in-vehicle 
time.  
 
Transport offering: No changes are expected for this driving mode due to IoT. 
 
Driving quality: Synchronisation of speed patterns may have minor impacts if vehicles drive more 
smoothly through intersections. IoT provides extended visibility, and driving errors are expected to 
change due to enhanced anticipation with IoT. Also changes in anticipation of intentions of other 
road users can be expected. Further, changes are expected to the frequency of harsh braking. 
 
Behaviour and skills: Behavioural adaptation of non-AVs may occur in two ways: drivers of 
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conventional vehicles might imitate behaviour of CAV in intersections, and VRU may show more 
careless behaviour when crossing the traffic lights if they learn to rely on being detected by IoT. 

4.1.2.2 Implications for safety 
 
The safety impact mechanisms where IoT was expected to have an effect compared to unconnected 
automated driving were related to Vehicle operations, AD user, Driving quality and Behaviour and 
skills.  
 
The mechanisms under Vehicle operations were speed behaviour, interaction with other vehicles 
and VRUs and situational picture. Speed behaviour’s safety impact mainly depends on the driving 
style and speed level itself. If the speed level is lower, safety improves mainly due to longer time for 
reaction, shorter braking distance and lower impact speed. The safety impacts of interaction with 
other vehicles and VRU’s also depend largely on the behaviour of the vehicle i.e. are there standstills 
or misjudgements between road users (due to e.g. yielding behaviour, intent communication). A 
large share of users (42 –72 %) at the user tests involving a pedestrian crossing felt uncomfortable by 
the following aspects: distance kept to pedestrians and cyclists, and behaviour when approaching 
pedestrians and cyclists at intersection. Situational picture refers to a more reliable detection of 
VRUs since the vehicle is warned before entering the pedestrian crossing. According to a recent 
study by AAA (2019) on sensor-based pedestrian detection systems, none of the test vehicles 
applied automatic braking in the scenario with a pedestrian target directly after a right curve. Hence, 
the function could improve safety since the vehicles’ situational picture is improved.  To summarise, 
Vehicle operations can improve safety due to improved situational picture and different speed 
behaviour. Although depending on the functionality (communication of intentions, yielding 
behaviour etc.) there might be some issues arising from the interaction between other vehicles and 
VRUs. 
 
The mechanisms under AD user (ease of driving, non-driving; in-car activities; workload; situation 
awareness; frequency of take back control) were identified to be indirectly influenced by the 
function. All of the topics were not included in the user test surveys and the tests themselves were 
not extensive enough to draw any overall conclusions. However, most users found the experience 
positive, safe and useful and the service relaxing and exciting. Although simultaneously a majority 
found the driving behaviour uncomfortable, in many cases, the users felt that the technologies were 
not mature enough. All in all the impact mechanisms under AD user are more subjective impacts and 
since the functionality is very limited, the impact on objective safety is most likely small.  
 
The impact mechanisms under Driving quality were synchronisation of speed patterns (indirect), 
driving errors, frequency of harsh brakings, limited/extended visibility and false/better anticipation 
of intentions. No estimate of the magnitude of impacts was found but safety was expected to be 
improved due to extended visibility, better anticipation of intentions, decrease in harsh brakings, 
decrease in driving errors and synchronisation of speed patterns. Although the impacts largely 
depend on the driving style: negative impacts are also possible e.g. if the driving style becomes less 
smooth.  
 
For Behaviour and skills, the only identified impact mechanism was behavioural adaption of non-
AVs. As regards to safety, the impacts are most likely more negative than positive for example 
because VRUs might start expecting that all cars will yield to them and other vehicles might start 
misusing their yielding rights. On the other hand other vehicles may also start yielding better to 
VRUs. Overall, traffic safety can be expected to deteriorate, slightly since the scope of the function is 
so limited, due to behavioural adaptation of VRUs and other vehicles.  
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4.1.2.3 Implications for Efficiency and Environment 
 
The impact mechanisms related to efficiency and environment where IoT was expected to have an 
effect compared to unconnected automated driving were related to Vehicle operations, Driving 
quality and Behaviour and skills.  
 
The impact mechanisms under Vehicle operations were speed behaviour and interaction with other 
vehicles and VRUs. For both mechanisms the impacts largely depend on the chosen driving style 
(speed level, smoothness, yielding behaviour etc.). If the speed level is lower and speed behaviour 
smoother, traffic efficiency and environmental impacts can be expected to improve due to 
decreased fuel consumption. Although depending on the functionality (communication of intentions, 
yielding behaviour etc.) there might be some issues from the interaction between other vehicles and 
VRU’s. 
 
The impact mechanisms under Driving quality were synchronisation of speed patterns (indirect), 
frequency of harsh brakings and limited/extended visibility. Similar to safety, the impacts on 
efficiency and environment largely depend on the driving style: it is expected to improve if smoother 
driving (decrease in harsh brakings, extended visibility, more synchronised speed patterns). For 
example, fuel consumption has been found to be halved with V2I communications (Eilbert et al. 
2018). 
 
For Behaviour and skills, the only identified impact mechanisms was behavioural adaption of non-
AV’s which in itself does not have a large impact on efficiency and environment since the scope of 
the function is so limited. 
 
In summary, the Signalised intersection AD mode is expected to provide benefits for the 
environment (reduced emissions). Impacts on traffic efficiency are assumed negligible. 

4.1.2.4 Implications for Personal mobility 
For the personal mobility, the impact mechanisms where IoT was expected to have an effect 
compared to unconnected automated driving were related to Quality of travel (comfort and stress, 
feeling of safety and use of in-vehicle time).  
 
A majority of user test participants indicated in the survey that their comfort and stress would 
decrease. Several studies have also found that advanced automated driving and infotainment 
systems can increase the comfort of driving (Gerla et al. 2014, Kolarova et al. 2019, Lemmer, 2019, 
Pakusch et al. 2018) and reduce stress (e.g. Daschkovska et al. Kolarova et al. 2019; Singleton, 2017, 
Singleton, 2019). On the other hand they can also increase boredom, loss of driving pleasure 
(Fraedrich et al. 2016; Pudāne et al. 2019; Trommer et al. 2017), loss of control, risk of malfunction 
(Kolarova et al. 2019).   
 
The AD mode itself is not expected to change the use of in-vehicle time substantially compared to 
unconnected AD due to the limited scope of its functionality.  
 
As regards feeling of safety, most users indicated improvement (e.g. increased visibility). The 
participants were more worried of safety of passengers and driver inside the vehicle compared to 
the safety of other road users.  
 
To summarise, UD-SI’s main implication on personal mobility is that journey quality is improved and 
this can increase the attractiveness to use the AD mode or the personal car in general. No reasoning 
was found for changes in the number of journeys or their duration and length. 
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4.1.2.5 Summary for Urban driving – Signalised intersection 
Figure 15 shows the expected benefits of IoT and implications for traffic safety, efficiency and 
environment and personal mobility for the AD mode Urban driving – Signalised intersection. 
 
 

 
Figure 15 – Expected benefits of IoT and implications for traffic safety, efficiency and environment and personal mobility 

for the AD mode Urban driving – Signalised intersection. 

4.1.3 UD – VRU mobile device detection 

4.1.3.1 Expected impacts of IoT 
Figure 16 shows the areas of the framework (Block 2) where IoT was expected to have an impact for 
the Urban driving – VRU mobile device detection AD mode, compared to non-connected 
autonomous driving. These areas are elaborated below. 
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Figure 16 –  Potential impact mechanisms of IoT for Urban driving – mobile device detection. (Orange coloured boxes 

indicate direct impacts, boxes with orange borders indicate more indirect or secondary impacts.) 

Vehicle operations: With the use of IoT to detect pedestrians and crowds, changes are expected to 
Speed behaviour, Interaction with other vehicles and VRUs and the Situational picture. In case of 
sudden hazardous situation, it may also enable the vehicle to execute Safety manoeuvres more 
appropriately. 
 
Mobile devices used by VRU can transmit the location and movement information of their users to 
the connected vehicles via IoT. This improves the situational picture of the vehicle, because VRUs 
can be detected at longer range and beyond obstacles. With more extensive and accurate position 
information, the system can better predict on-coming situations. Better prediction of VRUs will help 
to match the Speed behaviour to the traffic situation, and make Interaction with other vehicles and 
VRUs smoother. In case of a sudden hazardous situation, it may also enable the vehicle to execute 
Safety manoeuvres more appropriately.  
 
Predictions can be used to either guide the self-driving vehicle, or to supply warnings either to the 
driver or other road users (e.g. Gustafsson et al. 2013). Fusing information from the crowds of VRUs 
can also provide information about VRU flows (cf. Krytska et al. 2017), which supply information on 
traffic flow and its problems (e.g. congestion).  
 
AD User: The users’ Situational awareness is expected to change, if the user is informed on the VRU 
via an HMI. This information probably makes situation awareness more accurate. However, it is 
possible that users become over-reliant on the system, especially if the system is near perfect. 
Consequently, they may stop looking for VRUs themselves. This may decrease their hazard 
perception abilities. This will change their Driving experience, as they have less experience dealing 
with situations, which require anticipation of VRUs. The reliance on VRU detection may also be 
reflected in the increase of In-car activities.  
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Quality of travel: Comfort and stress of the drivers can change, when the interaction with VRUs 
becomes smoother, as well as their Feeling of safety if the interaction is perceived to be safer. There 
may be minor positive impacts to Travelling reliability, e.g. due to the ability to reroute vehicles 
away from areas with high VRU flows.  
 
Some findings regarding quality of travel were made in the pilot tests. While these findings cannot 
directly be generalised due to the pilot limitations, they can provide some indication on the 
potential.  Over three quarters of users found the experience (IoT/AD) comfortable with at least one 
participant mentioning discomfort at one point or another during the session. The vehicle behaviour 
(e.g. accelerating, abrupt braking) were the most common sources of complaint, leaving some 
participants with the feeling that the ‘human touch’ is missing. Experiencing the artificiality of the 
system during the testing session, as eloquently put by a participant, it needs more of a ‘human 
touch’. In Versailles, smoothness of ride was perceived more positively, where in Tampere most 
participants (20/27) rate the ride smoothness as uncomfortable. The context and system differ from 
one site to the other, therefore the results cannot be compared. In Versailles, direct comparison 
between the baseline (AD) and (IoT/AD) conditions resulted in Versailles: Users were aware of 
braking because of the pedestrian and/ or bicycle and participants stated that the IoT enhanced VRU 
detection happened with smoother braking, hence users were aware of the events and how they 
were related to the VRU detection. The only question we can related to situation awareness is 
vigilance and vigilance was rated and only one user thought the system was sleep inducing, either 
with or without IoT (i.e. IoT condition was only 0.2 score higher than with IoT condition). Vigilance is 
between 0.5 and 0.7 (-2 to 2 scale). 

 
Taking into consideration that the IoT condition always followed the non-IoT one, this finding is 
interesting. The perceived smoothness of the second ride, slightly lower the sleep-inducing effect of 
this ride. In reality, the opposite would be expected. Changes are so small, though, that the 
differences can be related to any factors (e.g. the test session finishes).   
Stress was slightly alleviated post-test when compared to pre-testing, but all in all ratings were 
positive in both Tampere and Versailles.  
 
Trust in the system and increase in sensitivity is important for travellers when using any system and 
even more when the system detects other road users. Reliability of information and its provision is 
more important than travelling reliability and comes first, i.e. the information provided needs to be 
accurate, to be received on time in order to technology to be used. Travelling reliability is not 
anticipated to affect much the travel times and delays. Potential delays might happen because of re-
routes but even these are not anticipated to be a considerable to notice magnitude. These small 
effects on certain road conditions and scenarios, i.e. situations where VRU detection safety issues 
might arise (unsignalised intersections, zebra crossing, busy urban centres like shopping areas, etc., 
can be escalated into a larger impact on traffic harmonisation of flow and relief of congestions. 
Therefore, the effect on personal travelling reliability will be small but when scaling it up on a traffic 
environment level, the efficiency of the traffic system might be improved.  
 
Detection of hazards, obstacles and other road users is a crucial and very error-prone aspect of the 
driving task. Participants rated the systems as safe. This area was the most positive with least 
concerns. Higher concerns were reported about the drivers and passengers inside the vehicle. It is 
anticipated that the deployment of service will increase safety.   
 
Overall, travel quality is improved on a hedonic level but travel efficiency increases are very small on 
a personal level. Increase in the latter should be viewed from a macroscopic traffic perspective.  
 
Transport offering: No changes are expected for this AD mode due to IoT. 
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Driving quality: Changes are expected to Driving errors, Frequency of harsh braking and Extended 
visibility with IoT. These are due to the improved Situation picture, which will help the vehicle/user 
to perform the correct manoeuvre well in advance, and avoid critical situations, and increase 
perceived safety (e.g. Versailles user testing). 
 
Behaviour and skills: Changes are expected to Route selection as AVs can reroute in case of VRU 
crowd detected ahead), which may lead to users not avoiding urban and complex driving contexts, 
conditions and environments, as some might do today. Accordingly, the complexity and the length of 
routes might increase, but the expected impact is not expected to be substantial for personal 
mobility choices. Behavioural adaptation of non-AVs (change in VRU behaviour if they become 
confident that the AV gives them way) is possible. VRUs may “learn” to push the limits of AVs 
(stepping out, knowing it will stop etc.), which may increase hazardous situations (Rämä et al. 2018). 
On the other hand, this may increase the drivers‘ need to be aware about VRUs, especially 
pedestrians. Over time, the lack of driving experience in certain situations may lead to deterioration 
of Driving skills. 

4.1.3.2 Implications for safety 
Vehicle’s Improved Situational picture as well improvements in driver’s Situational awareness are 
likely to increase safety of VRUs, by reducing the number of potentially hazardous situations. More 
appropriate Safety manoeuvres may reduce the number of crashes or mitigating their severity. More 
appropriate speeds (that is, lower speeds) will also reduce the severity of crashes if one happens. 
Potential decrease in Driving skills may on the other hand deteriorate traffic safety in manual driving 
situations. Similar influence is with Behavioural adaptation of non-AVs: if they start to expect that 
IoT connected AVs can detect them always, they may start to move less carefully. 

4.1.3.3 Implications for Efficiency and Environment 
Improved understanding of the VRU flows will allow the AVs to choose congestion free routes and 
also to match their speeds better to traffic gaps. This can slightly improve efficiency of the traffic and 
have environmental benefits. On the other hand, rerouting may lead to a longer distance travelled. 
However, the size of these impacts is not expected to be large.  

4.1.3.4 Implications for Personal mobility 
By improving the actual (or perceived) safety of VRUs, IoT connected AVs could make active 
transportation modes as well as using light-vehicles more attractive (Noland, 1995). Such a change 
may have complex implications. For example, increase in active transportation modes may improve 
public health (Oja et al. 2011) and make cities more liveable environments for all. On the other 
hands, when the modal share of e.g. cycling increases, it may also increase the absolute number of 
accidents, even though the relative risk decreases. Also driving can become less stress free, making it 
a more pleasant experience for those, who at the moment avoid driving in the cities. Overall, there 
changes may increase people’s mobility, as it is safer and more comfortable.  
 
In the pilot tests, changes in mobility patterns were not expected, apart from Versailles UD pilot. 
When users take up the role of tourist, as it was the case for the French pilot site, they expect 
increase in walking/cycling, increase in use of public transport and decrease in passenger car use. 
Personal mobility is not expected to be directly affected but the interaction and experience of the 
interaction with other VRUs will probably be different.  

4.1.3.5 Summary for Urban driving – VRU mobile device detection 
Figure 17 shows the expected benefits of IoT and implications for traffic safety, efficiency and 
environment and personal mobility for the AD mode Urban driving – VRU mobile device detection. 
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Figure 17 –  Expected benefits of IoT and implications for traffic safety, efficiency and environment and personal 

mobility for the AD mode Urban driving – VRU mobile detection. 

4.1.4 Highway Pilot – Hazard detection 

4.1.4.1 Expected impacts of IoT 
Figure 18 shows the areas of the framework (Block 2) where IoT was expected to have an impact for 
the Highway pilot – Hazard detection AD mode, compared to non-connected autonomous driving. 
These areas are elaborated below. 



 
 

46 

 
Figure 18 – Potential impact mechanisms of IoT for Highway Pilot – Hazard detection. (Orange coloured boxes indicate 

direct impacts, boxes with orange borders indicate more indirect or secondary impacts.) 

The change in the AV service related to the Hazard detection function would be the following 
(compared with AD without connectivity): 

 The vehicles would receive more information about hazards as the type and number of 

sources increases - the amount of information increases 

o Hazards would be better covered 

o Possibly new type of hazards would be covered: obstacles, incidents, road surface 

condition, stopped cars, jams… 

o Notifications and reactions of the vehicle (e.g. braking) would be more frequent  

 Hazards would be anticipated better - AV would receive the information earlier 

o Several sources (V2V and V2I) and connectivity would increase perception distance 

upstream  

 Reliability of AD service would increase 

o Several information sources could be used in confirming the perceptions 

o More information but not increase (less) in false alarms  

All above is expected to increase acceptance of Hazard detection function as part of AVs, to increase 
drivers’ willingness to purchase the functionality and also use it. The function would be used more 
frequently and the use would cover a variety of road types, areas and circumstances. Consequently, 
the penetration of the Hazard detection function in the actual traffic flow would be bigger than 
without IoT. In case the price of the IoT based Hazard detection function (share of the price of the 
car) becomes very high the willingness to purchase is less. 
 
In the participant interviews, some comments were received to indicate that users had noticed the 
obstacles and potholes due to Hazard detection function. 
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The Hazard detection function is targeted to all car drivers in highways. The recent ecoDriver project 
(2011-2014, Carsten et al. 2016) estimated that approx. 17% of vehicle km’s in Europe were in 
highways and the share of km’s by car was approx. 79%. Assuming that all cars are equipped and the 
function is used 80% of time leads to an estimate of 10.7% (17 x 79 x 80) which should be considered 
as a coefficient for any total effects (see also Rämä et al. 2018). Moreover, the frequency of hazards 
needs to be taken into consideration. The estimate gives insight to the potential of impacts of a 
highway autopilot designed for cars. 
 
Vehicle operations: Changes are expected to Speed behaviour of the vehicles as well as Car 
following behaviour.  Several studies regarding driver informative ITS services have showed decrease 
in mean speed and increase in time headways between vehicles for example, C-ITS  field studies 
(Malone et al.  2014) and expert assessments (Kulmala et al. 2008, Wilmink et al. 2008, Rämä et al. 
2018) and field studies variable message sign (Rämä and Kulmala 2000). Previous studies suggest 
that the impacts would be more substantial in case of an intervening system (such as automation) 
compared to the informative systems (e.g. Carsten and Tate 2005). Moreover, it is reasonable to 
assume that the impacts would be bigger because the hazards are covered better by IoT. Situational 
picture, due to receiving information on hazards ahead would be improved in two ways - on one 
hand the traffic management would have a better situational picture due to many information 
sources, and on the other hand the drivers could share information in vicinity of own vehicle. It is 
assumed that the vehicle would react automatically to many hazards, for example by braking, and in 
that respect safety manoeuvres may be more quick and harmonized as they would be less in the 
control of the human actor who are assumed to have more variation in reactions (e.g. reaction 
time). 
 
AD User: If the users are informed about the hazards ahead, their situation awareness changes. 
Critical for the situation awareness is the timing of observation and thereby, possibility to react to 
the hazards anticipatory. IoT enhances the early detection of hazards. The hazard detection 
functionality may have minor influence on in-car activities. The driver may engage to other tasks 
than the primary driving task. This would be feasible in case validity and reliability of the hazard 
detection system is very high. In addition, IoT may enhance fluency of handovers as the early 
detection gives more time in case of encountering a hazard. 
 
Quality of travel: Comfort and stress of the user are expected to be improved by IoT and hazard 
detection - due to early warnings abrupt decelerations could be avoided. In addition, a more general 
awareness of the hazard detection are assumed to contribute in decreasing stress related to driving. 
The users’ feeling of safety in AVs is likely to be improved as well. 
 
Transport offering: No changes are expected for this AD mode due to IoT. 
 
Driving quality: Due to the detection of hazards in advance, changes to driving behaviour are 
expected, which leads to changes in traffic flow (more smooth). Decrease in frequency of harsh 
braking and in frequency of shockwaves, extended visibility and better anticipation of intentions are 
expected due to more early information on hazards and improved communication between parties. 
Further, some decrease is expected in driving errors because of more time to react is given and 
automated manoeuvring of the vehicle. Minor indirect changes through synchronisation of speed 
patterns when majority of vehicles share the same information is assumed. 
 
Behaviour and skills: Minor/indirect changes are expected to harm by delays, due to the changes in 
traffic flow driving errors and because drivers would be better aware of the causes of the delays. 
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4.1.4.2 Implications for safety 
In this chapter safety impacts resulting from changes in ‘Vehicle operations’, ‘AD user’ and ‘driving 
quality’ are addressed. In addition, safety is influenced by changes in travel behaviour (e.g. number 
of journeys and route choice). All indirect and secondary impacts are not discussed in detail. 

Number of crashes is related to the speed (Nilsson 2004) and the risk of crash varies by road type 

(Elvik et al. 2019). The evidence for Nilsson’s Power Model comes from manual driving and the 

model may need some updates for the automated road transport. Still, it is assumed that speed is 

associated with crash risk also in automated driving. The evidence regarding the relationship of 

number of crashes and headway - car following - is not that strong. However, very short driving 

distances are associated with increase in risk of a crash. Based on earlier ITS studies (impacts of C-ITS 

Malone et al. 2014, impacts of VMS Rämä 2001) it is assumed that speed would decrease and 

headways increase due to improved hazard detection. Expert assessments, as well as ISA studies 

(Carsten and Tate 2005), have suggested that the effect is more substantial in case of an intervening 

system compared to informing systems. In case of AUTOPILOT it is assumed that hazards detected 

reliably would affect directly the controls of the AV. An estimate of the reliability should be 

combined with system penetration in traffic flow taking into consideration several factors 

influencing the penetration (Rämä et al. 2018). 

Severity of crashes is related to speed, and would decrease due to hazard detection. In urban area, 
speed affects substantially on the consequences if a vulnerable road user is hit by the car. However, 
in AUTOPILOT hazard detection was applied mostly in highways. In addition, applying IoT based 
hazard warning may affect crash type distribution. Moreover, new type of crashes may evolve, not 
known yet. 

4.1.4.3 Implications for Efficiency and Environment 
The amount of emissions and use of energy is directly dependent on the distance driven. Automation 
has potential to decrease emissions and use of energy as it may be more feasible to optimize driving 
speeds and have a more smooth traffic flow, less accelerations and decelerations, and stop and go 
type driving. This would also contribute in better throughput in traffic flow. 
 
Hazard detection is assumed to have small impact on use of materials. The function would prevent 
more efficiently than AD driving in potholes causing damages to the vehicles.  

The impacts on noise are not expected to be substantial. 

4.1.4.4 Implications for Personal mobility 
For travel behaviour the most substantial impacts are assumed resulting from changes in comfort 
and stress and in feeling of safety.  
 
Regarding modal share it is expected that the share of private cars in modal split would increase. 
Some user studies indicate that the introduction of automation in cars may increase comfort of car 
driving (Gerla et al. 2014, Kolarova et al. 2019, Lemmer, 2019, Pakusch et al. 2018) and reduce stress 
related to driving (Daschkovska et al. Kolarova et al. 2019; Singleton, 2017, Singleton, 2019). The 
hazard detection is expected to contribute in this because people probably feel more safe and 
comfortable when they are aware that the will be and are warned about potential hazards, provided 
that the warnings are not too frequent and that they are reliable and understandable from user 
point of view. In case of very frequent warnings driving would be less comfortable and the service 
would be turned off. 

Some results indicate that users may experience loss of driving pleasure which would lead to smaller 

shares of car use (Lemmer 2019). It is supposed that warnings about hazards would not influence on 

pleasure of driving. 
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No reasoning was found for changes in the number of trips. 

Duration of journeys may be shorter in case there are alternative routes to avoid encountering the 

hazard perceived and warned about. Harm by delays would be less due to the alternative route 

which would be shorter in time but also because of knowing better the reason for the delay. In many 

cases, the alternative route can be longer in km as part of the journey originally planned. The effect 

is not assumed to be big because very long alternative routes would not be used.  

IoT based hazard detection is expected to support delivering information not only during the journey 

but before it starts which may affect timing of journey and due to that duration of the trip. Driver 

information studies (e.g. Sihvola 2009) have indicated information on hazards may change plans 

regarding timing of the trip. The trip can be cancelled or shortened or the driver can decide to have a 

break due to the hazard.  Wide scale automation and IoT could improve traffic management and 

thereby enhance the optimal use of road network in case of a hazard. 

4.1.4.5 Summary for Highway pilot – Hazard detection 
Figure 19 shows the expected benefits of IoT and implications for traffic safety, efficiency and 
environment and personal mobility for the AD mode Highway pilot – Hazard detection. 

 
Figure 19 –  Expected benefits of IoT and implications for traffic safety, efficiency and environment and personal 

mobility for the AD mode Highway Pilot – Hazard detection. 

4.1.5 Platooning 

4.1.5.1 Expected impacts of IoT 
Figure 20 shows the areas of the framework (Block 2) where IoT was expected to have an impact for 
the Platooning AD mode, compared to non-connected autonomous driving. These areas are 
elaborated below. 
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Figure 20 – Potential impact mechanisms of IoT for Platooning. (Orange coloured boxes indicate direct impacts, boxes 

with orange borders indicate more indirect or secondary impacts.) 

Platooning differs from the other AD modes in the AUTOPILOT QoL evaluation in two ways. First, it is 
the only AD mode with potential use lasting for a substantial part of the driving both in time and 
space (in contrast to the UD and HP functions, which address very specific, time and space limited 
situations during the drive). Second, the AD mode is furthest apart from the defined baseline (SAE L4 
highway pilot). The expected benefits of IoT for this AD mode are considered from a follower’s 
perspective (not the platoon leader) and are described below. 
 
Vehicle operations: Due to the wider scope of the platooning AD mode, covering longer stretches of 
driving, changes are expected to all areas (Car following, Lane keeping, Speed behaviour, Interaction 
with other vehicles and VRUs, Safety manoeuvres, Situational picture). Reliable connectivity between 
the platoon leader and following vehicles allows for keeping shorter headways, which allows for 
energy efficient driving of following vehicles and the most efficient use of road space. This 
optimisation is restricted by safety issues arising from reaction and braking distances. It is envisaged 
that with increased connectivity and data availability road and traffic conditions can be better 
anticipated and therefore, not only could the distance be reduced in certain circumstances, but also, 
could be more adaptable when new information is received. This could make the vehicle operation 
smoother and more efficient. Better anticipation of traffic situations due to information flow via IoT 
helps stabilise car following behaviour in general, keeping the headway to the vehicle in front as well 
as the AV’s position within a lane more constant than without connectivity. The vehicles driving in a 
platoon use the same speed, therefore driving speeds are harmonised. Especially as the number of 
vehicles in a platoon increases, the platoon may cause a barrier to other vehicles, e.g. by hindering 
other vehicles from changing into the lane of the platoon. The situational picture of the vehicle is 
expected to improve with IoT connectivity; with a greater degree of connectivity a platooning vehicle 
would have access to much more data and information than the baseline L4 vehicle. 
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There is particular importance for a platooning group to have accurate awareness of the location 
and speed of other vehicles in order to judge how to maintain smooth journeys and constant speed, 
and when to perform safe overtaking manoeuvres of multiple connected vehicles. Additionally IoT 
connectivity of both V2V and V2X is expected to increase the accuracy of the situational picture, and 
the vehicle can therefore make more informed predictions of and interaction with surrounding 
vehicles. This is particularly important in high levels of mixed traffic when there are unconnected 
vehicles on the same road. 
 
In emergency situations, it would be expected that highly connected automated vehicles, which 
have a highly grained situational picture (see later), would be better informed to make the most safe 
decisions compared to a L4 vehicle with limited connectivity and the potential to choose to return 
driving control to the user. However, the choice of manoeuvre would be restricted by the algorithms 
and programming of the vehicle computers. 
 
AD User: Compared to the baseline of a motorway pilot, minor/indirect changes are expected from 
platooning on the Ease of driving/non-driving, In-car activities, Workload, Situation awareness and 
Frequency of take back of control. 
 
During the platooning operation of a long distance journey, activities of users may only be limited by 
available space, journey duration, other vehicle occupants or personal preferences/restrictions (eg 
motion sickness). This would expect to be generally the same than for a L4 or non-connected vehicle. 
In-car activities may be affected for some users if motion sickness can be reduced with a more 
smooth driving behaviour due to the connectivity. 
 
The workload of an AUTOPILOT platooning service user should be minimal during the platooning 
journey. However, if the user is unable to engage in a preferred activity for some reason, then they 
may experience boredom or fatigue.  
a level of anxiety to increase workload due to the lack of control over the vehicle for some people. 
The users’ situation awareness may be decreased or increased, depending on how the HMI is 
implemented and to which degree information of the vehicle, platoon and traffic status is made 
available to the user. 
 
Quality of travel: Changes are expected to Comfort and stress, Use of in-vehicle time as well as 
Feeling of safety. 
 
Riding comfort is expected to be improved in connected automated vehicles compared to 
unconnected L4 vehicles due to better information on and anticipation of the current and upcoming 
events and conditions.  
 
The design of and trust in the system is important in the reduction of stress - if successfully 
implemented in a fully automated and connected vehicle, the user of a following vehicle should 
expect a low degree of stress as there should be no responsibilities for vehicle operation during the 
journey. Furthermore, when using a platoon joining function, there can reduced anxiety concerning 
getting to the platoon at the right place and the right time. Stress may also be reduced compared to 
the baseline if the user can communicate directly with the platoon leader, and potentially also other 
platoon members (allowing a ‘community’ to be formed as they all share a journey). Platoon 
members could have access to monitoring the journey, viewing the same information as the leader 
(if they wish) regarding potential upcoming hazards, delays or route changes. 
 
On the other hand, the removal of driving/operation responsibilities could lead to new sources of 
stress if the trust in the system is low and there is concern over lack of control, malfunction or 
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actions of the leading driver. There could also be a negative impact on comfort as the feeling of 
‘driving pleasure’ will be removed for some users and those who are not able to partake in activities 
possible within a vehicle that give them pleasure, leading to boredom. This may especially be a 
problem for those who suffer from motion sickness (Penttinen et al. 2019). This can sometimes by 
overcome by the action of driving, but be exasperated by carrying out other concentration activities. 
Although the ride should be smoother in a connected AV (which could reduce motion sickness), it is 
not clear how these would balance out. For some, the anxiety related to sharing a ‘journey’ with 
strangers (albeit in separate vehicles) may increase stress and discomfort, though the ability to 
connect with them in a connected vehicle could alleviate this to some degree.  
 
The use of in-vehicle time may be affected for some users if motion sickness can be reduced with a 
more smooth driving behaviour due to the connectivity. 
 
It is uncertain how IoT connections can benefit the use of time over and above a non-connected 
vehicle. Similar to comfort and stress, there are marginal benefits to be expected from a smoother 
ride than a vehicle using sensors alone, leading to a better degree of comfort and so the tasks can be 
enjoyed more fully or may be easier to engage in if concentration is needed, in-vehicle motion needs 
to be limited or motion sickness is reduced. 
 
Some people may experience anxiety related to the lack of control over the vehicle, depending on 
the implemented HMI and the information and control options available to the users. 
 
IoT connections could improve feeling of safety if additional information is available to the users. 
However, there is concern regarding the programming of AV algorithms and the impact of computer 
malfunction. Knowing a vehicle also relies on IoT is unlikely to increase confidence, rather give more 
reason for malfunction concern, especially in relation to computer ‘hacking’. Thus, even if vehicles 
may be objectively ‘safer’, the users’ perception of safety may be different. This could especially be 
the case for platooning as vehicles could be driving closer together and at faster speeds, and 
requires some degree of confidence in the leading driver. Furthermore, the degree of ‘mixed’ traffic 
on the roads could affect this feeling of safety. IoT could alleviate this concern if platoon users are 
able to communicate with each other. 
 
Combining the observations above, fully automated and connected platooning opportunities would 
likely improve quality of travel in the context of personal mobility for the majority of people as 
opposed to driving a L4 unconnected vehicle. The driving behaviour could be smoother and journeys 
should be safer. This would improve comfort, reduce stress and allow a more productive or 
preferred use of in-vehicle time. This could allow individuals to participate in longer journeys in a 
platoon (and therefore more destinations) than the alternative. However, not all people may be able 
to partake in activities and some may feel obliged to work more. The greatest potential negative 
impact on personal mobility for the majority is that even if vehicles are safer, the ‘feeling’ or 
perception of safety may be reduced due to concerns of malfunction or hacking. Thus for those not 
comfortable with platooning their personal mobility may be disproportionally lower than the wider 
population. 
 
Transport offering: Platooning may provide an opportunity for new Mobility services, as examined in 
the case of Platooning in Brainport. This may lead to changes in Vehicle availability.  
 
IoT may open up new possibilities for mobility services which include a platooning option on 
motorway journeys. Once in the platoon there are potential harms for new mobility services if there 
is limited trust in other platoon users, especially the leader, however this may be reduced by 
connectivity between platoon members. Further negative impacts (relative to L4 unconnected) could 
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arise from malfunction or cyber security breaches (actual or perceived).  
It is possible the IoT connections could improve rebalancing of shared vehicles, as there will be 
additional data available regarding the locations of vehicles and users at any point in time, and 
predictability of availability based on journey conditions. 
 
The AUTOPILOT platooning AD mode could have a positive impact on transport offering in the 
context of personal mobility for the majority of people as opposed to driving a L4 unconnected 
vehicle. There may be greater confidence in when and where vehicles would be available. However, 
on the other hand, the service (if successful) could have a negative impact on wider (and more 
sustainable) mobility services, itself impacting on a wider population. 
 
 
Driving quality: Due to its nature, platooning is expected to affect Synchronisation of speed patterns 
and Variance in alignment of driving. This may lead to changes in the Frequency of harsh braking and 
Frequency of shockwaves. 
 
As discussed under vehicle operation, increased connectivity of vehicles is expected to lead to more 
harmonised driving behaviour in terms of speed, car following and lane keeping. 
 
As a result of this, if there are many connected automated vehicles sharing the road (either within 
the platoon, forming other platoons or on solo journeys), the sharing of data and information 
between them, including on their destinations and occupants needs, could lead to a greater 
synchronisation of journeys, part of which may be the synchronisation of speed patterns. Further, it 
has been shown that Connected ACC is more effective than ACC (Ploeg et al. 2011). However, in 
situations where there are high levels of mixed automation in traffic, the degree of synchronicity 
that can be achieved is unclear. 
 
When there are many fully connected and automated platoons within a traffic network, speed 
patterns may be better synchronised. This is because the situational awareness is higher due to the 
connectivity, allowing smaller headways, dampened speed variations (Ploeg et al. 2011) and more 
stable operations (Milanes et al. 2014).   
 
The connected vehicles in platoons may adapt their alignment accordingly to avoid ruts forming. 
Furthermore, the vehicles within the platoon may communicate with each other directly to provide 
more accurate information on the positions (both relative to the road and each other) and adjust as 
needed. 
 
Harsh baking occurs in situations when a speed reduction has not been anticipated. As anticipation 
of events is improved with connectivity, such events may be more easily predicted and reacted to. 
Rear-end collisions within vehicles in a platoon should be prevented. Furthermore, in a traffic system 
with many fully connected and automated platoons, traffic flow may be better predicted and there 
may be fewer shockwaves, both of which lead to harsh braking. 
 
Shockwaves tend to be caused by mixed speed patterns and harsh braking (reference). As previously 
discussed, harsh braking can be reduced by high levels of connectivity, and speed patterns can be 
synchronised.  As such, the occurrence of shockwaves may be reduced. 
 
Behaviour and skills: The new services enabled by platooning via IoT may lead to changes through 
Timing of journeys, Route selection and Behavioural adaptation of non-AVs. Through behavioural 
adaptation, manual vehicle drivers may be encouraged to use smaller headways as well. Studies 
have shown that non-AVs tend to travel at smaller headways when travelling close to platoons, 
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imitating the short headways of the automated vehicles (Gouy 2013;  Gouy et al. 2014, Yang et al. 
2019). A fully connected platoon could travel at shorter headways than L4 vehicles, while at the 
same time being more adaptive to surroundings and reactive to other driver behaviour.  
 
Automated driving could increase travelling during peak hours (Rämä et al. 2018), which would 
probably apply to the platooning service as well. This is presumably because of the possibility for 
alternative use of time during a journey.   
 
IoT enables better anticipation of traffic and road conditions ahead, which may cause the platoon to 
adjust routes based on the predicted road conditions for that particular platoon. In addition, the 
availability of platooning on motorways only may cause users to favour motorways over other 
routes, even if the journey is longer. The availability of real-time information could also allow users 
to make a more informed choice of route. The system itself could make different choices both 
before and during the platooning journey. 
 
The use of IoT is expected to offer the user a more informed estimate of duration and optimum 
timing and thus could have an impact on travel choices. The biggest impact on timing would likely be 
whilst traffic contains a large mix in automation levels. 

4.1.5.2 Implications for safety 
Traffic safety is affected through the boxes Vehicle operations, AD user, Driving Quality and 
Behaviour and skills. 
 
Direct impacts are expected from IoT on traffic safety through all mechanisms in Vehicle operations. 
If everything works correctly, safety impacts are mostly expected to be positive compared to the 
baseline (smoother following, lane keeping and speed behaviour; improved situational picture).  
 
The improved situational picture due to connectivity allows for better anticipation of the traffic 
situation ahead and can therefore be considered as beneficial for safety.  
 
It is expected that vehicle operations of vehicle with the AUTOPILOT platooning service could 
potentially increase traffic safety over a L4 counterpart. This conclusion is based on the assumption 
that the increased data and information received by the vehicle allows for a more highly grained 
situational picture on which to base its safety-related decisions. 
 
It is possible that reduced situation awareness and engagement in other tasks could have a negative 
impact on safety in certain conditions, as the user would not be prepared to react to an emergency 
situation. 
  
Impacts in the AD user field are expected to occur indirectly, and no direct safety impacts are 
expected. The effects are more related to user comfort and acceptance. 
 
Driving quality is expected to lead to traffic safety impacts by Synchronisation of speed patterns and 
Variance in alignment of driving, as platooning vehicles drive with the same speed and aligned to 
each other, and this may also lead to carry-over effects to other (automated or manually driven) 
vehicles.  
 
Traffic safety and efficiency are ultimately influenced by the driving quality of the overall traffic 
system. Driving quality is a product of the operations of individual vehicles within that system. When 
a system has numerous platooning journeys contained within it, their operation and driving quality 
can have a large impact on the overall system safety. However, interaction effects with non-
connected and manual vehicles have to be considered.  
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Traffic safety likely to improve as speed differences between vehicles decrease. This also leads to 
less overtakings. 
The smoother traffic patterns may lead to decrease in Frequency of harsh braking and shockwaves, 
which in turn may increase safety by reducing secondary accidents. 
 
Regarding Behaviour and skills, the Timing of journeys as well as Route selection have impact on 
safety due to changes in exposure and different accident risk on different route types and traffic 
conditions. The direction of impacts (positive or negative) depends on the effect of these changes. In 
addition, Behavioural adaptation of non-AVs can lead to decrease in safety due to closer following of 
vehicles, even if not in a platoon (imitation effect), and/or increase in safety due to imitation of a 
smoother driving style with lower or more constant speeds and less overtaking. 
 
A fully automated and connected vehicle in a platoon may have some limited safety advantage over 
L4 vehicle because of its higher degree of situational awareness and better anticipation. Behavioural 
adaptation of manual drivers imitating the short headways of platooning vehicles could lead to a 
higher risk of accidents for non-AVs. 
 
Further, when an AV goes into manual mode after a period of driving in automated mode, drivers 
may tend to maintain shorter headways (Skottke et al. 2014), which could happen when an 
AUTOPILOT platoon disconnects. Behavioural adaptation of AUTOPILOT platooning users after the 
automated platoon ends may lead to an increase in accident risk. 
 
Behaviour and skills of both AV and non-AV drivers are affected by the presence of platooning on 
highways, which may lead to increased safety risks. It is not clear if the fully automated and 
connected platoon would increase or decrease this risk for all road users. Their higher degree of 
anticipation may lead them to operate in a manner that may be unsafe were they non-connected 
and/or non-automated. As this behaviour could be adopted by other road users, there is a 
responsibility to adapt to road conditions, and ‘lead by example’, which could lead from a situation 
of decreased relative safety to one which could be safer. 

4.1.5.3 Implications for Efficiency and Environment 
Changes to traffic efficiency with the Platooning AD mode are expected through the areas Vehicle 
operations, Driving quality and Behaviour and skills. In Vehicle operations, smaller gaps between 
vehicles and more constant speed behaviour lead to an increase in efficiency. Less acceleration leads 
to decrease in emissions. 
 
It is recognised that shorter headways between vehicles can lead to more energy efficient driving 
(due to aerodynamic drag). Although this impact could be small for automobiles (which are likely to 
be relatively energy efficient as the powertrain technology would likely be also advanced), this 
efficiency could make an impact over long distance journeys that would likely occur in a platoon. 
 
The changes in interaction with other vehicles may have positive or negative implications for traffic 
efficiency and the environment. On the one hand, the interaction between the vehicles driving in the 
platoon is expected to be beneficial due to better coordination of the movements, but the 
interaction with vehicles that are not connected may have negative impacts. For example a platoon 
with several vehicles driving with close distances may hinder drivers of manual vehicles, or non-
connected AV, to make necessary lane changes. This may lead to disturbances in traffic flow. 
 
The higher level of situational awareness means that the speed behaviour of a platoon can be 
smoother than a non-connected platoon, which is a more energy efficient way of driving. However, 
it is not clear how much of an overall impact this could be over a non-connected platoon. One 
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specific advantage could be the adaptation of speeds in areas with environmental monitoring, 
requiring reduced speeds when pollution thresholds have been exceeded. Although this technique is 
already employed on some smart motorways by variable speed limits, a connected vehicle could 
have a more nuanced picture of the situation and adapt itself. However, should the platooning 
vehicles have zero tailpipe emissions there is no advantage, and it is also not clear how much more 
of an impact this would be in a platoon than in a solo vehicle. 
 
Vehicle operations of AUTOPILOT vehicles within a platoon can be smoother and more efficient 
compared to non-connected L4 vehicles due to their better anticipation. However, it is not certain 
how large this impact could be (especially for zero tail-pipe emission vehicles), and may only be 
marginal and/or apply to very long journeys.  
 
Regarding Driving quality, direct impacts of platooning to traffic efficiency are expected from 
synchronisation of speed patterns and less variance in the alignment of driving. These impacts are 
likely to be positive but small. Indirectly, efficiency and environment are affected due to less harsh 
braking and less frequent shockwaves.  
 
Better synchronised vehicle operations could lead to improved network efficiency and capacity, with 
less shockwaves. Harsh braking and acceleration are energy inefficient ways of driving, smaller 
headways improve aerodynamics which contribute to energy efficiency, thus all have local and 
global pollution impact. Improved network capacity means more vehicles driving on the network, 
which is likely to have negative environmental impacts (eg pollution, noise). On the other hand, if 
road networks are better used then additional road links may not be required to align traffic supply 
and demand. 
 
As mentioned previously, the improved anticipation of a fully connected and automated platoon 
would be expected to reduce harsh braking situations, making driving smoother and more 
synchronised. This has a positive impact on the energy efficiency of a powertrain so can have both 
local and global pollution impacts. Therefore, also related shockwaves could be reduced. 
 
The existence of fully connected and automated vehicles within a platoon rather than L4 
unconnected platooning vehicles is anticipated to improve driving quality across the network. 
Improved driving quality across a traffic network means more efficient driving across it, with a lower 
environmental impact. 
 
On Behaviour and skills, traffic efficiency is affected by different timing in journeys and route 
selection – impacts of both are expected to be positive for traffic efficiency if they lead to a more 
even spread in travel demand over space and time. Regarding environmental impacts, different 
route selection may have unwanted impacts on local emissions in certain areas. Behavioural 
adaptation of non-AVs may have positive or negative implications. 
 
There may be more driving during peak hours with fully automated and connected vehicles in a 
platoon (Rämä et al. 2018), presumably as users are able to use their time productively. If this lead 
to congested networks all vehicles on the network may not be driving as efficiently as they 
otherwise could, increasing emissions.  
 
The improved situational awareness of a fully and connected autonomous platoon may lead it to 
choose different routes than the L4 baseline vehicles. These could ideally be based on more efficient 
or less polluting routes within the network. In addition, the availability of platooning on motorways 
only may cause users to favour motorways over other routes, even if the journey is longer. 
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Non-AVs may adapt their speed and headway to that of platoons they travel close to (Gouy 2013; 
Gouy et al. 2014, Yang et al. 2019). Despite the safety concerns of this previously discussed, if the 
platoon is driving in an efficient way, other road users could be encouraged to drive more efficiently, 
reducing the environmental impact across the network. There may be limited impact of the fully 
automated and connected platoon over a group of non-connected L4 vehicles, other than its better 
situational picture and anticipation leading to the most efficient speed (the difference of which is 
unknown).  
 
The behaviour and skills of non-AV drivers and AV users may be marginally altered by the presence 
of platooning automated vehicles on the motorway network, with connected vehicles having a slight 
advantage over less connected vehicles. The driving quality across the network may be improved 
leading to more efficient driving and less related pollution.  
 
In addition to these mechanisms described, indirect benefits to efficiency and environment can be 
expected if traffic safety is improved and there are less accidents, which often lead to congestion. 

4.1.5.4 Implications for Personal mobility 
Personal mobility is affected through Quality of travel, Transport offering and Behaviour and skills. 
Compared to the baseline of Level 4 Highway pilot, user comfort is expected to increase due to a 
smoother ride enabled by the anticipative information through IoT. This may also positively affect 
driver stress. On the other hand, new sources of stress can arise in the platooning experience, e.g. 
related to the coupling of the vehicles. Depending on the information given to the user, the feeling 
of safety may also be affected.  
 
Platooning with IoT has potential to lead to new mobility services being created (as for example the 
“platooning date” tested in Brainport). From a personal mobility perspective, new mobility choices 
can be considered positive. 
 
On a wider scale, if users of new mobility services prefer individual travel the platooning option 
could be chosen over other more sustainable mass transit options for the same journey. If this 
occurs on a large scale, these alternatives may not be economically viable, highway systems could be 
over-utilised and the personal car would remain centric within transport systems. 
 
Changes in timing of trips and route choice are also possible, and their impacts for personal mobility 
are considered positive. 

4.1.5.5 Summary for Platooning 
Figure 21 shows the expected benefits of IoT and implications for traffic safety, efficiency and 
environment and personal mobility for the AD mode Platooning. 
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Figure 21 – Expected benefits of IoT and implications for traffic safety, efficiency and environment and personal mobility 

for the AD mode Platooning. 

4.1.6 Summary of findings 

4.1.6.1 Summary of IoT impact mechanisms 
A summary of the areas where changes are expected due to IoT (compared to the baseline of non-
connected automated driving) is shown in Table 4 below. Most impacts of IoT were assumed to 
emerge through the mechanism areas Vehicle operations and Quality of travel. Vehicle operations 
largely relates to the driving behaviour of vehicles, which can be enhanced with anticipation 
provided by IoT connectivity. The vehicle is able to adjust to upcoming situations earlier and more 
smoothly. Quality of travel largely consists of users’ subjective perception of the trip, which can 
improve with the IoT connectivity e.g. by enabling more comfortable rides and better traveling 
reliability compared to non-connected autonomous driving. Per AD mode, most impacted 
mechanisms are expected for Platooning. 
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Table 4 – Expected mechanisms where IoT has an effect compared to the baseline. Darker colour signals direct effects, 
light colour indirect effects. 

  AVP UD - SI UD - 
VRU 

HP - HD PL 

Vehicle operations 

  car following           

lane keeping           

speed behaviour           

interaction with other vehicles and VRUs           

safety manoeuvres           

situational picture           

AD User 

  ease of driving/non-driving           

in-car activities           

workload           

situation awareness           

stamina (fatigue)           

frequency of take back of control           

driving experience           

Quality of travel 

  comfort and stress           

use of in-vehicle time           

traveling reliability           

feeling of safety           

Transport offering 

  new possibilities for mobility services           

car ownership           

vehicle availability           

Driving quality 

  synchronisation of speed patterns           

variance in alignment of driving           

driving errors           

transitions from AD to driver           

frequency of harsh braking           

frequency of shockwaves           

limited/extended visibility           

false/better anticipation of intentions           

Behaviour and skills 

  number of journeys           

destinations           

transport mode selection           

timing of journeys           

route selection           

harm by delays           

behavioural adaptation of non-AVs           

driving skills           
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4.1.6.2 Summary per impact area and AD mode 
The impacts of IoT and AD on traffic safety and efficiency and the environment are assumed to be 
rather small for the urban driving and hazard warning AD modes, due to their limited scope. 
Depending on the level of technology, implementation and human behaviour, the impacts can be 
positive or negative. However, this may change if with a rising penetration rate there is more 
congestion and the personal mobility options are in effect reduced. Changes in personal mobility 
behaviour have potentially large impacts also on traffic safety and efficiency and environment, as 
they define the amount of travel and the modal split. These are main factors defining the impacts on 
safety, efficiency and the environment. 
 
Due to the scope of the AD modes AVP and Platooning, the potential impacts of those are further-
reaching. Both can have significant impacts on travel behaviour and change people’s travel patterns. 
Depending on their direction, these potential changes in travel patterns are reflected by positive or 
negative impacts on traffic safety and efficiency and the environment. 
 
Having fully connected and automated vehicles forming platoons within the road network seems 
likely to have a positive impact on the overall network efficiency and this on the surrounding 
environment. The impact is derived from the better situational awareness allowing a smoother and 
more anticipatory style of vehicle operations due to the high connectivity, and the influence that 
their presence may have on other vehicles within the network. However, significant impacts on 
efficiency and environment may only be witnessed when there are high levels of connectivity and 
automation across the whole traffic network. 
 

Services like AVP have potential to increase car ownership due to the time-saving and stress-

reducing benefits compared to conventional or non-connected autonomous parking. AVP could also 

improve vehicle availability of shared vehicles if parking areas are conveniently located. 

 
The Hazard warning service was the only service where overall impacts can be expected to be 
positive (though small). AVP is expected to have overall benefits for safety and mobility, but the 
overall impacts for efficiency and environment are not clear.  
 
As stated before, the AD modes AVP and Platooning are expected to have the largest impact 
potential due to their potentially large impact on the trip as a whole. Therefore, indirect impacts for 
safety and efficiency and environment can be significant, as the impact potential increases with 
increased number and/or duration of trips using the AD modes. 
 
The greatest safety potential of the AUTOPILOT AD modes over the baseline non-connected 
autonomous vehicles is probably the more highly grained situational awareness and enabled better 
anticipation of events and conditions ahead. Negative impacts on traffic safety could arise from 
behavioural adaptation as well as from changes to exposure. No AD mode is expected to have only 
negative impacts. 
 
As personal mobility is regarded to improve with the availability of more mobility options, the 
AUTOPILOT AD modes are expected to be positive for personal mobility. 
 

4.1.6.3 Summary for impact mechanisms for Mileage per mode (Block 2)  
 
Vehicle operations 
 
Vehicle operations considers the immediate driving behaviour of the vehicle, such as its speed, 
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headway to the car in front, and interaction with other road users. 
 
Speed behaviour is assumed to change in automated driving with IoT compared to without 
connectivity. Due to the connectivity enabling better anticipation, speeds are assumed to be more 
moderate and adjusted earlier to upcoming situations. In environments with VRU, such as the Urban 
driving functions, this can be considered positive for traffic safety. With high penetration rates, the 
overall traffic can be harmonised, leading to more efficient traffic flow. A lower number of starts and 
stops translates to less emissions of internal combustion engine vehicles. 
 
Early detection and manoeuvring along with harmonised speed profiles are expected to improve the 
interaction process between AV and other road users by enabling a safer and lower risk interaction. 
Minimising accidents and near misses enhances the efficiency of the traffic system as well leads to 
less emissions.  
 
Improvements in speed profiles, harmonised arrival and braking distances, removal of unnecessary 
stops, braking, manoeuvres and interactions are expected to lead to an improved traffic network 
with increased efficiency.  However, these enhancements are applicable to certain scenarios and not 
on the whole road network.  
 
Interaction with manually driven vehicles can have negative effects, if drivers of manual vehicles are 
frustrated by CAV adhering to speed limits, for example. This may lead to an increase in overtakings 
and associated accelerations and decelerations, which are detrimental to traffic flow and may 
increase risky situations (Rämä et al. 2018). 
 
Regarding the different AD modes, Vehicle operations are expected to mostly have safety benefits 
for Hazard warning and Platooning, while the direction of impacts on safety is unclear for the other 
AD modes. For efficiency and environment, impacts are unclear for all AD modes, largely due to 
uncertainties in interaction with other road users (AVP, Signalised intersection, VRU detection, 
Platooning) and speed behaviour (Signalised intersection, VRU detection).  
 
 AD User 
 
The impact mechanisms of the AD user category relate to the behaviour, awareness and experience 
of the AD user. The impacts are relevant for traffic safety and considered generally positive but 
small. In fact, they can be considered more related to user comfort. 
 
Quality of travel 
 
The Quality of travel category is related to how the user perceives the use of the AV: how 
comfortable or stressful the ride is, how in-vehicle time is used, what the reliability of travel is as 
well as the feeling of safety. 
 
Comfort is dependent on vehicle design, but it has been generally found that AD improves comfort 
(Gerla et al. 2014, Kolarova et al. 2019, Lemmer, 2019, Pakusch et al. 2018) and reduces stress 
(Daschkovska et al. Kolarova et al. 2019; Singleton, 2017, Singleton, 2019). This may be particularly 
relevant to fully automated platooning which will likely occur during longer journeys where comfort 
is more important. Also AVP is expected to greatly increase comfort and convenience of car use. 
 
The ride itself would be expected to be smoother in connected automated vehicles, which should 
have better knowledge of their surroundings and upcoming route hazards. Early detection of events 
is expected to increase the comfort and reduce the stress of the user, which will impact the quality 
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of their travel.  
 However, the design of and trust in the system are important in the reduction of stress. 
 
On the other hand, IoT with AD could lead to different form of stress if the trust in the system is low 
and there is concern over lack of control, cybersecurity, malfunction or actions of leading driver. For 
some, the anxiety related to sharing a ‘journey’ with strangers (albeit in separate vehicles) may 
increase stress, though the ability to connect with them in a connected vehicle could alleviate this to 
some degree.  
 
Rämä et al. (2018) estimated that travelling reliability can be increased with new automated vehicle 
services, but on the other hand it can be decreased if private car use (and thus congestion) 
increases. Connectivity with IoT could mitigate this to some extent, but not completely. 
 
Quality of travel is related to personal mobility impacts, and generally thought to improve mobility 
with all AD modes.  
 
Transport offering 
 
The category transport offering refers to the potential changes in mobility options available to users.  
Transport offering is related to personal mobility impacts for the AD modes AVP and Platooning, and 
impacts on mobility are expected to be positive. 
 
Driving quality 
 
Driving quality is related to the changes in driving behaviour on a vehicle level (Vehicle operations) 
and how well it is able to drive but also on traffic flow level and how smooth the traffic flow is. 
Driving quality concerns the translation of impacts on single vehicle operations to the road network 
in a wider scope. 
 
AUTOPILOT AD modes have potential to lower errors regarding the detection of and interaction with 
VRUs, leading to safer experience of these interactions. IoT is expected to extended visibility in 
anticipation of the VRU, leading to earlier braking. Less errors lead to less unnecessary manoeuvres 
and less accidents on route, therefore a positive impact to traffic efficiency and environment. Harsh 
braking is expected to decrease, as the optimal reactions will occur between the vehicle and the 
VRU. Redundant braking can be reduced.  
 
All piloted AD modes are assessed to have positive impacts on driving quality regarding traffic safety 
and efficiency and the environment.  
 
Behaviour and skills 
 
The topic ‘behaviour and skills’ is largely related to the personal mobility behaviour of individual 
users (and non-users) and the skills required. 
 
This category of impact mechanisms has a potentially large impact on quality of life, as it includes 
mechanisms dealing with the change in travel behaviour (e.g. number of trips, mode choice, route 
choice). Therefore, the overall impacts on traffic safety, efficiency and the environment are largely 
dependent on the changes in these mechanisms with AD and IoT. 
 
The successful implementation of the AD modes can potentially affect route selection, with users 
not avoiding urban and complex driving contexts, conditions and arrangements. For example, an 
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older driver will not select a busy, life-boasting city centre at night, where potentially pedestrians 
would cross the road, without hesitation and respect for signalized sections. However, when re-
routing is done by the AV, then the user will not choose the route, but the system will do so to avoid 
a risky or congested situation with other road users. The complexity and the length of routes might 
increase, as the detection system will ‘unload’ the user, but the expected impact will not be decisive 
or very important for personal mobility.  
 
Users will choose any route with no hindrances or second thoughts, regardless if they are near or far 
because of the AV and will not avoid complex and tiring traffic conditions (e.g. congestion, shopping 
centre areas with many pedestrians around, urban centres, etc.) which will potentially negatively 
affect the traffic flow and density and similarly the environment, because of increase in noise, 
emissions and fuel consumption. It is still uncertain if the increase in duration and length of routes 
will be counterbalanced by the optimisation and harmonisation of traffic and increase of AV and 
shared transportation options.  
 
Over time, when drivers get used to high level automation support, their driving skills may 
deteriorate (e.g. Rämä and Koskinen 2019). Added upon the existing deterioration, not relying on 
their own senses to detect other road users, and especially road users, will potentially lead the other 
users to be left out from the attention of the driver as well as the usual allocation of cognitive load 
for scanning the surrounding and anticipating movements and responses. However, AD modes with 
IoT can lead to establishing communication between various road users and not only vehicles, which 
will potentially lead to simple transfer of load and attention from one to the other task 
(driver/passenger).  
 
Skills related to scanning the environment and interacting with other road users as part of the daily 
driving task may deteriorate. However, this will happen less because of IoT system and more of the 
AV use in general. If cooperation and interaction is supported and implemented, it could enhance 
the communication between users and, thus, create new skills and behaviours that would replace 
the traditional driving task-related ones. Deterioration of driving skills can decrease safety in manual 
driving situations. 
 
The impacts of behaviour and skills on personal mobility are considered positive, as more flexibility 
in travel and increased mobility options improve personal mobility in general. The impacts on safety, 
efficiency and environment are less clear as they depend on the extent and direction of the changes 
to travel behaviour. The total traffic exposure may increase or decrease. Different travel modes have 
different accident risks and different emissions, as well as different impacts on the road network 
efficiency. Different road environments have different accident risks. The extent and direction of 
behavioural adaptation of non-AVs (such as manual vehicle drivers and VRU) is also largely unknown 
and can have positive or negative impacts on safety, efficiency and the environment. 
 
 
Overall 
 
Table 5 shows a summary of findings for Block 2 – Mileage per mode for each AD mode and impact 
area. 
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Table 5 – Summary of results. “+” indicates mostly positive impact, “-“ indicates mostly negative impact. More indirect 
impacts in parentheses. 
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4.2 System dynamics modelling 

4.2.1 Background and approach 

In order to gain a better understanding of the potential QoL impacts in the future and to study the 
interactions between different factors, system dynamic modelling was applied. This chapter is based 
on work presented by Harrison et al. (2019). 
 
The approach was developed on a base model of the transition towards car-sharing and highly 
automated vehicles (HAV) in the Netherlands (Nieuwenhuijsen et al. 2018).  
 
This model was adapted and extended in order to understand the complexities of the attributes in 
relation to societal QoL and to explore the sensitivities to uptake of highly automated vehicles. 
Scenarios based on expert opinion and sensitivity testing allowed to examine the potential impacts 
on both CAV uptake and QoL indicators.  
 
System dynamics (SD) modelling captures the behaviour of complex systems over time, combining 
product diffusion, non-linear dynamics, time-lags and feedback loops (Sterman, 2000). It has been 
widely applied across many sectors, including business, industry and healthcare, as well as 
increasingly within transport research (Shepherd, 2014). SD can be thought of as a two-step process:  
 

 An initial development of a qualitative causal loop diagram, to establish the boundary, 
capture the key endogenous and exogenous variables and their connections that are key to 
a system of interest.  This should lead to closed feedback loops within the system that can 
either be reinforcing (positive –an increase in one value leads to an increase of another) or 
balancing (negative – an increase in one variable leads to a decrease in the other). 

 Quantification of the causal loop diagram through identifying the system-driving stocks 
(accumulations) and flows (rates), underlying equations to represent relationships and data 
inputs, then calibration to validate the behaviour. 

 
SD modelling has been applied to the automobile industry and uptake of new vehicle technologies. 
Many of these studies have focused on alternative fuels and powertrain transitions. Other SD 
models that were developed to understand the uptake of advanced vehicle technologies include in-
car navigation (Kim 2007), car-sharing services (Geum et al. 2014) and IoT impact on intelligent 
transportation (Marshall 2015).  
 
There have been to date a limited number of studies which have used SD to study the uptake or 
impact of automated vehicles. Stanford (2015) studied the potential impact on total vehicle distance 
travelled through a successful introduction of AV, examining key variables and relationships within a 
broad system. He concluded that unstable responses leading to either automobile or public transit 
dominance are more likely than a steady, moderate transition towards an even modal split. This 
work was limited to a series of qualitative causal loop diagrams to explore the author’s assumptions. 
The same author was involved in a study similarly focused on the impact on vehicle use and modal 
shift (Gruel and Stanford 2015), and again exploring causal loop diagrams of transport systems. Their 
findings were positive across all their scenarios (safer, better use of time, increased accessibility, 
lower monetary costs and less energy use). A key insight was that AVs alone are unlikely to lead to a 
sustainable transport system, so early policy intervention to avoid AV dominance is necessary. 
Nieuwenhuijsen et al. (2018) developed a full SD model to represent the diffusion of all AV levels, 
driven by technology development and also incorporating the uptake in car-sharing. Through three 
scenarios (Base, Conservative Bloom and Progressive Bloom) applied to the Netherlands, they 
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concluded that there were high levels of uncertainty, though higher levels of automation are unlikely 
to gain large market shares (even long-term) without optimistic conditions (mainly related to 
economics and user perceptions). Using the results from Niewenhuijsen and an established SD-
related model ‘ScenarioExplorer’ (Malone et al. 2001), Puylaert et al. (2018) considered the impacts 
and uncertainties of low levels of automation (L1-L3). They found that traffic and congestion would 
likely increase, though when cars are also connected there is less congestion despite a higher 
number of trips. SD modelling has also been applied to understand potential effects of AVs on land 
use and the transport system (May et al. 2019). In line with findings in other studies, the authors 
conclude that under all scenarios tested, total vehicle distance travelled would be expected to rise as 
AVs were introduced (with contribution from ‘empty’ trips), and this could lead to reduced public 
and active transport use, and suggest this could be mitigated by encouraging the adoption of shared 
vehicles. It is interesting that although these examples are few, there are similar conclusions drawn 
regarding both the uncertainty and the risk of increased vehicle use as AVs are introduced and 
become widespread, which is in conflict with aspirations of sustainable transport systems. 
 
In the system dynamic modeling within AUTOPILOT the model developed by Nieuwenhuijsen et al. 
(2018) was used as a base and adapted to address the research objectives: 
 

 What are the sensitivities of uptake to utility for highly automated CAVs? 

 How do the AD modes developed in AUTOPILOT accelerate, enable or enhance CAV uptake? 

 How does CAV uptake impact on QoL? 
 
The SD model study considered the AUTOPILOT AD modes in a wider scope as part of shared 
mobility.  
In the base model, private car ownership is gradually replaced by car-sharing, technological 
development is driven by research funding and learning, and adoption of technologies is based on 
vehicle attributes of price, comfort, familiarity and safety. A high-level overview of the key variables 
and feedbacks is shown in Figure 22, and full model details, including key equations and inputs are 
available in Nieuwenhuijsen et al. (2018).  
 

 
Figure 22 – High level overview of the base model (reproduced from Nieuwenhuijsen et al. 2018). 
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The base model (by Nieuwenhuijsen et al. 2018) was developed to operate under three scenarios: a 
Base scenario designed to reflect a “business as usual” situation (i.e. no major support for CAV) with 
a base year of 2000, and two optimistic “In Bloom” scenarios (one conservative and one progressive) 
starting from the year 2015, where conditions are favourable towards AV. In the AUTOPILOT work, 
the “In Bloom” Conservative Scenario was used as the base scenario. By adopting the In Bloom 
Conservative we are implicitly assuming that favourable conditions (economic and political) are in 
place. The model was run for 50 years until 2050. Modelling of fleet shares of different automation 
levels showed that L0 vehicles remain dominant in the early years and do not become insignificant 
until the 2040s. Highly automated driving (L4 and L5) become more dominant only after 2045 
(accounting for around half of the fleet). 
 
The sensitivity of fleet shares to variables related to utility and car-sharing was tested, as these could 
potentially be impacted by the AUTOPILOT AD modes. The transition of a user from using a vehicle 
of one level of automation to another level is driven (in part) by the relative utility of the two levels 
of automation. Utility was determined by the components Attractiveness (including Familiarity, 
Safety and Comfort) and Price. The Comfort and Safety attributes are assumed to be influenced by 
the availability of Autopilot use case technologies, which in turn depend on the availability and 
quality of IoT platforms. 
 
Sensitivity testing showed that the uptake of highly automated CAVs is most sensitive to the 
attractiveness weighting in the utility and the level of Safety and Comfort. To explore the how the 
AUTOPILOT Services may accelerate, enhance or enable (C)AVs, we extended the model to include 
the uptake of these. 
 
The three services considered in this model have been developed within the AUTOPILOT project and 
been subject to public user testing in Brainport, Netherlands. They are: 

 Urban Driving: A service which connects to devices in an urban environment (e.g. traffic 
systems, pedestrian smartphones) so that the vehicle can take appropriate actions (e.g. yield 
to pedestrians). 

 Highway Pilot: A service which alerts the vehicle of upcoming hazards (e.g. potholes, 
obstructions) on the motorway (detected by other vehicles) so the vehicle can take 
corrective actions. 

 Platooning: A service which matches users wishing to platoon (drive in conveys with small 
headway and driven by lead vehicle) on long journeys. 

 
The model extension is shown in Figure 23. Fleet Size (by automation level) is calculated within the 
base model, and the Utility Modifier is the key output of the extension which feeds back into the 
Utility function within the base model (thus leading to transfer between automation levels as 
described in the previous section). It is assumed that although all highly automated vehicles can be 
equipped with the services, they do not come as standard and a user would choose to use it at extra 
cost. However, the costs are not directly included in the model, as this data is not available. 
Scenarios can be run within the model by selecting which services (AD modes) are available as a 
separate service, with the base scenario having the assumption that all services are included as 
standard. Thus, with this model extension the potential impact of AUTOPILOT services was assessed. 
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Figure 23 – Model extension (key concepts based on Struben and Sterman, 2008). 

4.2.2 Results 

The adoption rate of the services is a product of the number of non-adopters (within the highly 
automated vehicle fleet), the ‘willingness to consider’ the services, and the percentage of those who 
will use the service once adopted: 
 

 Number of non-adopters is based on the fleet size of highly automated vehicles that are not 
already adopted. It should be noted that this considers vehicles, not users, due to structural 
restrictions of the base model. 

 Willingness to consider reflects the appearance of the service within a decision set. This can 
increase over time when influenced by social and media exposure to the service, but can 
also decay if the exposure is low. The key inputs and structure are based on the willingness 
to consider electric vehicles (Struben and Sterman, 2008).  The initial user acceptance has 
been determined using van der Laan scale of technology acceptance (Van der Laan et al. 
1997), which determines ‘usefulness’ and ‘satisfaction’ from survey data of the three 
services in public user testing carried out in early 2019 in Brainport, Netherlands. The values 
of initial user acceptance determined here are: 

o Urban Driving: 0.7 
o Highway Pilot: 0.2 
o Platooning: 0.3 

  The percentage of adopters are those who will use the service once they have adopted it. It 
has also been determined from the public user test surveys. Users were asked how often 
they used related existing technology (e.g. navigation systems, cruise control), and this data 
was used to create a look-up table that related the use of technology (at least once a month) 
to the population with access to the technology. 
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The proportion of users of each AUTOPILOT service is used as a utility modifier. The base model is 
set up in such a way that the comfort and safety levels are considered to be the maximum value 
assuming that the vehicle is fully connected and automated. This would only be the case when the 
full potential of CAVs is met, i.e. when all services are adopted. Although it is recognised that there 
are other services that may contribute, our interest is focused on the particular services developed 
within AUTOPILOT. It is further assumed that the three services considered contribute equally to the 
utility. Thus, the attractiveness weight is assumed to have a minimum value of 0.5 and a maximum 
value of 0.8, where each service can contribute up to 0.1. For the comfort and safety levels, there is 
an assumed minimum equal to the Level 3 values (Safety = 0.3, Comfort = 0.5), and the maximum is 
the base value for Levels 4 (Safety = 0.7, Comfort =0.8) and Level 5 (Safety = 1, Comfort = 1). Each 
service contributes up to one third of the difference between them. 
 
Results in Figure 24 show the uptake of the three AUTOPILOT services by HAV users (under base 
conditions). The speed of uptake is affected by the initial user acceptance and the knock on effect 
that this may have on social exposure. It can be seen that the variance between the service adoption 
only holds for around 20 years (at around 80% of adoption), and no services are fully adopted by 
2050. 
 
 

 

Figure 24 – Percentage of HAV users who adopt the AUTOPILOT services. 

The uptake of automation was shown to vary with service availability. The results show that under 
the base scenario conditions, the AUTOPILOT services could contribute to a 20 % market share of 
highly automated vehicles by 2050, meaning automation would account for over half of the fleet 
rather than around a third. Also, as would be expected, it showed that with more services available 
the adoption is increased.  
 
It is recognised that these services are illustrative due to the assumptions made, but there is 
evidence that services such as these which impact on the utility of AVs are important for sustained 
market success and will enhance, accelerate and enable the uptake of AVs.  

4.2.3 Impact on quality of life 

Outputs related to QoL were built in to the base model described in this chapter. They were derived 
from the Fleet Size. The choice of these outputs to reflect QoL are drawn from the framework for 
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Impact Assessment pathways prepared by the Trilateral Working Group (Europe, US, Japan) on 
Automation in Road Transportation (ART WG). In the SD assessment, QoL outputs are determined 
from the distance travelled by car per person and the changing fleet size. 
 
From the original model and NL data (CBS 2014), the average daily travel by car in the Netherlands in 
2014 per person is 15.6km. In the Netherlands in 2015 (the start of our model period), the 
population of the Netherlands was around 17m and there were around 8m registered vehicles, Thus 
the average daily travel per car is 33km. May et al. (2019) suggest that for a fleet of almost 100% 
shared ownership HAV in 2050, car-km can be up to 141% greater than in a fleet with no highly 
autonomous vehicles and per-car-km can be 148% greater. It was assumed that HAV use is this much 
greater throughout the duration of the scenario. Daily per person mileage may change over time due 
to other factors, but this is not accounted for this in the model. The share of road mileage between 
road types (urban, rural and motorway) are taken from statistics by the UK Department for 
Transport, as Dutch statistics were not forthcoming. Similarly, emission factors were taken from UK 
data (National Atmospheric Emissions Inventory). It is additionally noted that these emission factors 
do not account for electrification or decarbonisation of the fleet, not the intricacies of emission 
reduction potential from AV services (such as platooning). Finally, speed on different road types, also 
based on a UK methodology (Ricardo, 2018), was used to determine travel times and the proportion 
of time spent travelling in automated mode was assumed (L3 = 0.1, L4 = 0.75, L5 = 1).  
 
As the QoL indicators were derived from fleet it is recognized that only limited insights can be 
drawn.  In the absence of the advanced IoT services being developed within AUTOPILOT, we have 
shown that uptake of highly automated vehicles is likely constrained relative to a scenario where 
these vehicles are considered to be fully operational. As a result of this, L3 vehicles dominate the 
market by 2050. Although offering automated driving in certain situations, this reduction leads to 
reduced travel in automated mode and thus less efficient driving styles may lead to potential excess 
emissions and energy use. However, if as assumed in our model that highly automated vehicles lead 
to increased mileage then any benefits of efficient driving may not be realised. This could be 
counteracted if automated vehicles are introduced within the sharing economy and there is a 
transition away from the current model of the private owner-user of vehicles, thus there would be 
fewer vehicles on the road and less ‘empty’ mileage (assuming the fleet is the correct size to 
efficiently meet demand). There are some health benefits in the highly automated scenario, such as 
reduced pollution-related disease burdens and risk of traffic incidents. However, the latter may be 
bias to those who use a fully automated vehicle, whereas individuals in a conventional vehicle or 
engaging in active travel (often arguably amongst the most vulnerable) may be subject to increased 
risk of injuries.  
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5 Implications for societal quality of life 

5.1 Relation between impact areas and quality of life 

In AUTOPILOT quality of life has three main building blocks which are public health, individual quality 
of life and equity. The implications on these areas are considered to derive from impacts of IoT and 
AD on traffic safety and efficiency, the environment and personal mobility. Table 6 shows the 
assumed linkages between the impact areas and quality of life. 
 
Smoother vehicle operations and increased driving quality due to IoT in automated driving have 
potential to increase traffic efficiency, reduce delays and reduce emissions. This can be beneficial for 
citizens’ well-being, health as well as equity. However, these benefits are offset with an increase in 
travel demand. Further, benefits are not certain as they depend on the programmed behaviour of 
AVs as well as other road users and their interactions, as well as related phenomena such as 
behavioural adaptation. 
 
 
 

Table 6 – Links between impact areas and Societal quality of life. X denotes linkage, (x) indirect linkage. 
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Safety 

Nr. of crashes x x x x x         

Severity of 
crashes 

x x x x x         

Efficiency 

Capacity     x         x x 

Throughput               x x 

Delays     x     x     x 

Peak period 
travel time 

    x     x   x   

Environ-
ment 

Emissions x x   x         x 

Energy use           x   x x 

Materials use                   

Noise x     x x       x 

Travel 
Behaviour 

Modal share (x) (x) x x x x x x x 

Nr of journeys (x) (x) x x   x       

Dur. and 
length of 
journeys 

(x) (x)   x (x)   x x x 

Land use 
Need for 

parking space 
    x (x)     x   x 
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5.2 Health 

Health was found to be affected through safety, environment and travel behaviour. The direct 
impacts of safety, efficiency and environment on public health are not clear, mainly due to the 
uncertainties related to speed behaviour, interaction with other road users and behavioural 
adaptation. In addition, indirect impacts due to change in accident risk (e.g. due to change of travel 
mode and/or road type used) and exposure (e.g. route selection, number of journeys) are unknown 
and have a large influence on the direct effects. 
 
Due to the increased comfort and convenience especially with the AVP AD mode, it can be expected 
that travel behaviour is likely to change in favour of (personal) car use. This is likely to affect health 
in negative ways, e.g. by reducing the amount of active travel modes (walking and cycling, including 
walking to public transport stops). Also the exposure to emissions may increase, which is negative 
for health. 
The main factors influencing public health considered in this study are frequency and severity of 
accidents, physical activity and exposure to emissions. Deaths in road traffic affect all age groups and 
therefore mortality, which takes into account the age at which death occurs.   
 
The use of AD modes can decrease driving speeds. As speed is a major factor in accidents, the AD 
modes could contribute in decreasing the number of injuries and their severity in an accident, 
leading to positive impacts on morbidity. Emissions and pollutions are injurious effects of road 
transport affecting morbidity. Because they can be somewhat reduced with the IoT functions, the 
impact on morbidity would be positive.  
 
Active transport modes such as walking and cycling are considered as physical activity and beneficial 
to human health and well-being (provided that the conditions are right, e.g. safe infrastructure, 
sufficiently clean air). If automated vehicles become easily available and affordable for everyone, it is 
possible that physical activity will decrease. This may lead to a more passive lifestyle, which has 
disbenefits for health. This effect has been observed e.g. in cities where public transport has been 
offered free of charge to citizens: people increasingly use the bus instead of active transport modes 
for short trips. 
 

5.3 Well-being 

Individual quality of life, or well-being, was found to be affected through all impact areas: safety, 
efficiency and environment, travel behaviour and land use (need for parking space). Social, physical 
and mental well-being can increase or decrease, depending on the changes in injury accidents and 
their severity. Changes to social well-being are also dependent on traffic efficiency, travel behaviour 
and land use (regarding AVP), with unclear impact directions. For physical well-being the impact 
areas are mainly the same as for health: traffic safety, environment and travel behaviour. Changes to 
mental well-being is thought to be mainly affected through safety, noise and modal share, while 
changes to economic well-being depend on efficiency and travel behaviour. All impact directions are 
unclear. Changes in travel behaviour have large indirect potential on the direct impacts considered. 
 
Social well-being can improve with an increase in accessibility due to new travel options. On the 
other hand, if AD modes lead to an increase in car travel, this may discourage use of active transport 
and decrease physical activity, which can lead to decreased physical and mental well-being. Further, 
increased car travel may offset the benefits mentioned above.  
Regarding AVP, the decrease of traffic looking for parking spaces as well as the potential decrease in 
street-side parking lots may benefit active travel modes by freeing up more space for pedestrian 
walkways and cycle lanes. Enhanced detection of VRU and other road users may increase physical, 
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mental and social well-being of these groups. 
 

5.4 Equity 

A fair transport system provides sufficient accessibility for all under most circumstances (Martens 
2016). Insufficient suitable transport options are a main obstacle for overcoming poverty and 
unemployment and meeting daily needs (Alonso Raposo et al. 2019). IoT and AD has potential to 
either improve or decrease social, economic and regional equity, depending on the implementation 
and uptake. 
 
Due to the additional equipment needed, the first AV coming to the market are likely to be 
expensive. This might limit benefits to wealthier individuals (Milakis et al. 2017), leading to 
deterioration of economic and social equity. According to Milakis et al. (2017), this scenario would 
also have several indirect consequences. Regarding traffic safety, if automated vehicles prove to be 
safer than conventional ones for the drivers and passengers, also safety benefits may distribute 
unevenly. Further, in the long run, potential spread of activities and reduction of public transport 
offering may limit access to activities from people without access to AV. 
These disbenefits for equity can be mitigated e.g. with policy measures limiting individual use and 
encouraging reasonably priced shared automated vehicles. For example, an increase in shared 
mobility services together with decreased need for parking space could then increase housing 
affordability and improve social and economic equity. 
 
Equity was found to be affected through efficiency and environment, travel behaviour and land use 
(need for parking space). Changes to social equity are dependent on travel behaviour and land use 
(For AVP). Changes in economic and regional equity are mainly formed by efficiency, environment 
and travel behaviour. Again, impact directions are unclear, and changes in travel behaviour have 
large indirect potential on the direct impacts considered. 
 
Social, economic and regional equity may improve somewhat with IoT because the conditions to 
provide information to users and cover more regions and circumstances would be better. The price 
of automated transport services is critical in deciding whether IoT would improve people’s access to 
work, recreation or medical care. 
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6 Discussion 

6.1 Challenges encountered 

The challenges encountered in to the quality of life assessment are twofold: First, automated driving 
itself is a concept in development, and highly automated vehicles do not yet drive on public roads. 
(The number of partially automated vehicles is also rather low.) Therefore it is challenging to 
determine the impacts of automated driving itself, and even more to assess the potential additional 
impacts of IoT. 
 
Second, the transport system is a complex entity, which includes many different impact areas and 
interactions between them that are not possible to cover entirely in the scope of this research. 

6.1.1 Automated driving pilots 

Pilot tests of automated driving are challenging. As the vehicles in the pilot tests are experimental 
prototypes, there are limitations on where, when and by whom they are allowed to operate. For 
safety reasons it is necessary that a professional operator is inside the cars when testing automated 
vehicles. It is not always possible to conduct tests in real traffic conditions. 
 
In addition, it is difficult to determine what the automated driving in the pilots should be compared 
with, i.e. what is selected as a baseline of the assessment. Therefore, the taken impact assessment 
approach is flexible allowing for exploration and iteration during the course of the project.  
 
All opportunities to collect information on user experiences and expert opinions were taken into 
account. Potential end users were involved as passengers in the automated vehicles, where possible 
and feasible.  

6.1.2 Transport system complexity 

Transport systems are “internally complex systems, made up of many elements influencing each 
other both directly and indirectly, often nonlinearly, and with many feedback cycles” (Cascetta 2009, 
Alonso Raposo et al. 2019). Transport policies can be far-reaching and have significant impacts for 
example on economy, land use, environment, quality of life and social cohesion (Alonso Raposo et 
al. 2019). These policies may cater for conflicting interests. Dealing with these complexities is 
necessary for ensuring effective and resilient policies, but it is a challenging task.  
 
The objectives of individual and societal quality of life may be conflicting: for example, improving 
personal mobility on an individual level may cause traffic system related issues, such as an increase 
in VKT, if individual motorised travel modes become more attractive than public transport or walking 
and cycling. Contrarily, technology may lead to improvements on the traffic system level that are not 
necessarily directly observable as benefits to users. Figure 25 provides a conceptual framework 
regarding these conflicts. The work in this study focuses on the societal perspective. 
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Figure 25 – Dimensions for personal and social mobility (Kolarova et al. 2018). 

 
Policy makers have an important role in determining these scenarios and the role that AV will 
assume in local, regional and global transportation systems (Dean et al. 2019). It has been 
hypothesised (Sinasic and Wray 2017) that the degree of AV regulation is most important for 
determining economic, social, environmental and health impacts of AV. Therefore, all stakeholders 
should cooperate to ensure equitable distribution of health impacts of AV. Without intervention by 
regulators, AV capability will likely be tailored by manufacturers to the demands of individual users, 
and the maximum benefits for safe and efficient operation of the road network may not be obtained 
(Atkins 2016). Thus, a key question for policy makers is how CAV can best provide network-wide 
benefits related to AV capabilities, penetration rate and uptake (Atkins 2016). 
 
The need for new governance is highlighted also by Alonso Raposo et al. 2019. If private vehicle 
ownership remains the norm, the projected increase in travel demand will likely pose challenges to 
the system. If that happens, it is important to have alternative governance approaches to help deal 
with the emerging issues. In addition, new governance models are needed in the short run for 
managing the interaction of new technologies and conventional vehicles. 
Public authorities will have greater responsibility in the future, to ensure that the potential that new 
technologies offer, is used to create a more efficient and sustainable transport system (Alonso 
Raposo et al. 2019). New governance of the multimodal transport system is necessary and should 
cover cooperation among all involved actors. 
 
Vehicle design is focused on user comfort and safety. To meet users’ demands, vehicle 
manufacturers are likely to implement AV operations that resemble human behaviour rather than 
being optimised for traffic smoothing (Makridis et al. 2018, Alonso Raposo et al. 2019, Atkins 2016). 
As traffic efficiency requires optimising different parameters than comfort and safety, it is not likely 
that it will be a top priority of vehicle manufacturers. Therefore, unless there are significant policy 
measures to ensure this, all potential benefits for a safe and efficient operation of the road network 
may not be obtained (Atkins 2016). 
 

6.2 Potential of AUTOPILOT services 

The AD modes piloted in AUTOPILOT were assessed to have potential benefits as well as risks.  Many 
studies have concluded that improvement in the service level of existing traffic conditions can only 
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be expected with efficient and effective vehicle-to-vehicle communication in use (Alonso Raposo et 
al. 2019). As has been shown in the AUTOPILOT project, IoT is one way of realising this V2V 
communication. Communication between vehicles and infrastructure can enable better anticipation 
of events and traffic conditions, and therefore enable smoother driving and faster reaction to events 
in the road environment. 
 
Potential benefits of IoT and automated driving include smoother driving and more reliable trips due 
to better anticipation of and reaction to other road users as well as events and road conditions 
ahead. More accurate and up-to-date information can be sent to the vehicles and users. Smaller 
variations in speed, a lower speed level in general as well as shorter headways between vehicles and 
better anticipation offer potential improvements to traffic safety, efficiency and the environment. 
Travel comfort and convenience are expected to increase. 
 
Potential risks of IoT and automated driving are a shift in mode choice from active travel modes and 
public transport to personal cars, which can lead to increases in emissions and decline in efficiency 
and safety, and cyber security issues.  
 
The AD modes Urban driving – Signalised intersection and VRU detection as well as the Hazard 
warning AD mode for highways are focused on very specific events and conditions. They may be 
suitable for use in specific areas, such as near schools or in city centres. However, the system point 
of view should be kept in mind. If the systems are in place in some locations but not in others, it may 
affect manual drivers’ behaviour in a negative way if they put too much trust and responsibility to 
the systems. Also other road users, especially VRU, can be affected. 
 
What can be determined from the system dynamic model applied within the QoL study is that of the 
variables that were selected to represent IoT provision and AUTOPILOT use cases, utility weighting 
would have the most influence on automated vehicle penetration under all scenarios and conditions. 
A low utility value can lead to market failure even under favourable conditions and high quality IoT 
provision. Although higher quality provision of IoT does not appear to offer great improvements on 
automated vehicle uptake compared to the base conditions, it is noticeable that poorer quality IoT 
could inhibit uptake. 
 
It was assumed that car driving may increase with increased comfort of driving. Increase in car 
driving would also mean increase in emissions and pollutions. This effect is, however, dependent on 
several factors and policies applied in the transport system and in the society.  The role of active 
travel modes is assumed to be important regarding physical well-being and health. If motorised 
driving is going to increase at the cost of active modes contributing in physical health, some negative 
impacts on wellbeing are expected. 
 
It needs to be kept in mind that many of the estimated impacts, positive and negative, are 
dependent on the penetration rate of the AD modes in the vehicle fleet. In addition, benefits can be 
offset and potential disbenefits amplified by an increase in personal car use. Further, the results are 
only valid with the assumptions made in the assessment (IoT is in place and working). Many 
uncertainties remain in the development and deployment of automated driving. 
 
For reasons of simplicity, interaction effects between different impact areas were not considered in 
this analysis. However, in reality there may be significant interaction effects especially with 
increasing penetration rate of the AD modes. Lower speeds and more harmonised traffic in general 
as well as enhanced detection can increase the attractiveness of active travel modes in comparison 
with private cars. This is expected to lead to increased equity and better well-being and health. 
However, if private car use increases significantly, congestion may again increase, leading to adverse 
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impacts for traffic safety, efficiency and the environment. This may again lower attractiveness of 
private cars and increase attractiveness of public and active travel modes.  
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7 Conclusions and recommendations 

The quality of life evaluation framework applied in this assessment combines subjective and 
objective data from different sources. It is based on a framework developed by experts from three 
regions (EU, US, Japan). The framework was applied to the five general AD modes tested in the 
AUTOPILOT project. This approach, using the assessment framework as a basis, ensured that the 
potential impacts were considered systematically, including different potential impact mechanisms 
and both direct and indirect impacts. Due to the uncertainties and complexities related to vehicle 
automation and the transport system in general as well as limitations of the pilots it was not possible 
to perform quantitative analyses. Instead, an analysis of the impact mechanisms related to IoT and 
automated driving and the potential directions of impacts on traffic safety, efficiency and the 
environment as well as personal mobility was performed. Based on these results, conclusions of the 
potential of the AD modes on improving societal quality of life were formed. Benefits for traffic are 
expected mainly through improved anticipation and reaction to events in the road environment, 
enabling smoother driving, but negative impacts for example in interaction between road users and 
behavioural adaptation can counteract. In addition, all potential benefits can be offset by an 
increase in private car use. The AD modes are expected to increase comfort of car users, which may 
lead to favouring car use over other travel modes. 
 
In summary, the assessment showed that AUTOPILOT AD modes have potential to improve quality 
of life, but benefits are not self-evident. Due to the complexity of the transport system and 
uncertainties in the development and deployment of automated driving and connectivity with IoT, 
impacts are difficult to estimate. Personal mobility and travel patterns have a large influence on the 
size and direction of impacts.  
 
Based on the findings, some recommendations for improving societal quality of life with connected 
automated driving can be made on a general level. The impacts on quality of life are to a large extent 
dependent on how the AD services are implemented, deployed and regulated. Policy makers should 
be aware of the potential impacts, positive and negative, in order to make sure that objectives for 
sustainable and liveable cities can be achieved. The role of regulation and policy making on the 
impacts of automated driving is substantial. The form of deployment of the AD services has a large 
influence on the potential impacts. Shared mobility services appear to have more potential for 
benefits than private vehicle use (Rämä et al. 2018). Integrated city and transport planning can help 
to facilitate walkable and cyclable cities and prevent a decrease of physical activity by use of active 
travel modes. The system-dynamic modelling showed that IoT has potential to enhance the uptake 
of automated driving, which further emphasises the importance of policy making and regulation. 
 
The degree of AV regulation is considered a prime factor determining the economic, social, 
environmental and health impacts of AVs (Sinasic and Wray 2017). In order to avoid increased use of 
personal cars due to their increased comfort and convenience that is enabled by the AD modes, their 
regulation in urban areas could be considered. The potential of shared mobility services and flexible 
public transport should be facilitated. IoT has potential to improve also these modes, e.g. by helping 
ride sharing as in the Brainport platooning AD mode. Work of and cooperation between all 
stakeholders is crucial to ensure that population health impacts as well as their equitable 
distribution are priority considerations as regulators develop their response to AVs (Dean et al. 
2019). 
 
Dean et al. (2019) conclude their scoping study of AV health impacts by recommending that public 
health and transportation officials should actively monitor trends in AV introduction and adoption, 
regulators should focus on protecting human health and safety in AV implementation, and 
researchers should work to expand the body of evidence surrounding AVs and population health. 
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These conclusions support the findings of the work in AUTOPILOT, and can be widened also to cover 
the other aspects of societal quality of life, namely well-being and equity. 
 
The methodology developed and presented in this work allows for all the available, rather 
fragmentary, information on potential impacts of CAD, based on the piloted AD modes in 
AUTOPILOT, to be utilised without losing sight of the big picture, that is the complex system formed 
by the several interrelated impact mechanisms, where changes to one mechanism can have both 
negative and positive impacts on others. All available fragmentary information is brought together in 
a systematic way. This allows starting to form the bigger picture, learning more about the Blocks 3 
and 4 of Figure 1, where the impacts on the transport system and quality of life are described. The 
method also allows for following the paths back, from impacts towards factors that play a role in 
positive or negative impacts. The methodology can be applied to future pilots of automated driving 
as well. It is recommended that more real-world data be collected in future pilot tests and FOTs in 
order to gain more insight on the size and direction of potential impacts in the different impact areas 
identified, and complete gaps in the fragmented data. 
 
Future work on system dynamic models such as the one developed within this work would benefit 
on considering the role of the automobiles within the wider transport system rather than being 
central to it, further integration of health-related measures, incorporating powertrain and energy 
technology transitions, detailing the future mobility sharing economy, considering user costs and 
social inequities, and expanding to include spatial elements that can address accessibility issues. 
 
It is important to note that the results of this work are theoretical. It is assumed that connectivity 
between vehicles and infrastructure is available, widely in use and working as intended. 
Therefore, the results disregard potential challenges in uptake and deployment of the services.  
However, as the objective of the work was to identify the most relevant impact mechanisms, rather 
than try to produce numerical estimates, which would have to be uncertain, this does not pose a 
limitation to the work. 
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9 Annexes 

9.1 Annex 1 – Impact mechanisms 

9.1.1 Use of AD (Block 1) 

9.1.1.1 Acceptance 
The acceptance of automated driving is linked to the intended acquisition of automated vehicles, 
specific functionalities or services, as well as their intended use. The user needs to have some 
knowledge (or at least a mental image, which may not be based on reality) of the automated 
functions to be able to accept them. 
Automation awareness refers here, on one hand, to the user’s general knowledge on the automated 
functionalities, their performance and limitations. The user needs to know of the operational design 
domain (ODD), i.e. in which driving environments and circumstances the vehicle can drive in 
automated mode.  
Willingness and possibility to have indicates whether the potential user has the means, and whether 
they intend to acquire or choose (in case of car-sharing) automated functionalities into the car they 
use. As a mental resource, the potential user needs to have at least some general knowledge about 
automated functionalities to reliably indicate willingness to have. 
Willingness to use is difficult to measure. To some extent it is reflected by actual use, i.e. the share of 
trips or km the user is willing to use the automation within its ODD; how frequently and in which 
circumstances the automated functionalities are used. The user may use the functionalities on all 
trips and in all conditions when the service is available (inside the ODD), or they may be willing to 
use the systems in specific conditions only, for example on long trips, on motorways or when tired. 

9.1.1.2 Transport system 
Here, the transport system is outlined as road transport system. 
Transport management refers to how the whole road transport system is managed; what 
infrastructure and vehicles are available and how they are controlled, what transport services are 
offered to the users in the city or other administrative area. Transport management is implemented 
on local, regional, national, European levels and also covers the relationships and cooperation of 
different levels. 
Operation of vehicles / systems is part of the transport management referring how vehicle fleets - 
buses, shuttles, robotaxis, platoons of cars or trucks - are operated. It concerns questions such as 
who is the operator, what is the role of automation, which are the principles or rules of operation at 
different times of the day (week; other circumstances), are there any priorities, how is multimodality 
taken care of, etc. 
Equipping vehicles with automated functionalities is reflected in the price of AV. Price formation of 
cars and vehicles is influenced also by other parallel changes such as electrification of road transport.  
Price is dependent on business models (who is going to pay and what, how the costs and profits are 
shared) and the price setting of AVs for example in car sharing. 
Travel costs are formed for example of vehicle costs, moving power costs, leasing costs, ticket costs, 
parking cost and time costs. It has been suggested that the value of time is going to change with 
higher levels of automation allowing drivers in road transport to engage in other activities than 
vehicle operation. 

9.1.2 Mileage per mode (Block 2) 

9.1.2.1 Vehicle operations 
The category Vehicle (control) operations include the driving behaviour of the AV itself, such as its 
acceleration, deceleration, lane keeping, car following, lane changing and gap acceptance. Vehicle 
operation characteristics (driving style) directly affect several other impact areas such as road 
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(network) capacity and road safety. Relevant automation applications include those which provide 
longitudinal and/or lateral control with respect to the road and other vehicles. (Innamaa et al. 2018). 
 
Car following describes the longitudinal driving behaviour of the AV when following another vehicle, 
e.g. the time headway to the vehicle in front and its potential changes in time. Lane keeping refers to 
the lateral behaviour of the AV, meaning how well it stays inside a lane and whether there are 
oscillations in lateral movement. Lane changes can be partly automatic, initiated by the driver (with 
turn signal) or they can be (totally) automatic, initiated by the AV when encountering a vehicle 
ahead travelling at a slower speed than targeted by the AV or when required to follow the route.  In 
presence of other vehicles in the next lane, AV needs to find suitable gap for the lane change (gap 
acceptance of the AV). Gap acceptance is relevant also for intersections where the AV needs to yield.  
Speed behaviour describes the speed choice of the AV (target speed) and its potential changes in 
different situations (such as speed variation). There are several detailed indicators to describe speed 
behaviour such as spot speeds, mean speed, variance of speed. Interaction with other vehicles and 
VRUs refers to all kinds of interactions between the AV and other road participants, such as over-
takings, cut-ins, distance kept to other road-users, stopping behaviour at intersections and 
pedestrian crossings, gap formation at ramps, etc. The category safety manoeuvres includes 
behaviour programmed into AVs for situations where the driver does not take back control when 
requested (minimum risk manoeuvres) as well as manoeuvres carried out by the driver, e.g. manual 
braking or steering if the AV does not seem to handle some situation. The term situational picture 
refers to the interpretation of the situation around the vehicle (the current traffic situation, the road 
and the environmental conditions) formed on basis of the information available to the vehicle (or 
driver) from its sensors and via connectivity. 

9.1.2.2 AD User 
The items under ‘AD user’ address the perspective and experience of the user and their change from 
being a driver (in manual driving) with increasing automation to being a user (in full automation).  
‘Ease of driving, non-driving’ indicates driver experience/opinion on how easy it is to take care of all 
the dynamic and other driving tasks, but also the possibilities for doing other things than driving 
during the trip. Non-driving refers to the periods of time where the user does not need to drive, 
enabled by the AV taking control of the driving task. The length and frequency of non-driving periods 
are critical for ease of driving. AD may change the nature and extent of in-car activities carried out 
by the user while riding/driving. Ease of driving also refers to making driving easier with low level 
automation when car support the driving in his/her driving. 
The term workload refers to the interaction between the task demands and the driver’s capabilities 
in a certain driving situation. Situation awareness incorporates the driver’s understanding of the 
driving situation as a whole, including e.g. the traffic and (road) weather conditions, and of AV 
behaviour at any given time of the trip. It refers to perception of the elements in the situation, how 
their meaning is comprehended and how the status in the near future is anticipated.  The focus 
(relevance) of situation awareness depends on the level of automation: With full automation, it is 
not necessary for the user to be aware of the driving situation (but they may still like to have the 
information), whereas in partial automation it is very important. For conditional automation the fast 
recovery of situation awareness is a challenge when the take back of control is required. Situation 
awareness is closely related also to the HMI through which the AV and its user communicate (what 
part of the information available to the vehicle is shown to the user). 
Stamina (fatigue) means the energy level or vitality of the driver/user. In long monotonous driving or 
non-driving situations, e.g. on a motorway with little traffic, drivers may become tired, which has 
implications on their driving capabilities, to fully utilize the driving skills. 
The term ‘Frequency of take back of control’ relates to situations in conditional automation where 
drivers are requested to take back control at the end of ODD (system initiated), or they can 
themselves take back full control of the driving task when preferring to drive by themselves (driver 
initiated). From the user perspective, it is relevant how often and in which situations the driver 
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needs to take over control and how early they get the indication of the requested take over. As this 
take over control situation is potentially risky, its frequency is of interest. Late take over requests 
may lead to poor situation awareness of the driver when beginning to drive again. The frequency 
also affects the possibilities for secondary activities during the drive. 
Driving experience concerns the experience (mileage) of the user of the AV that s/he drives manually 
by conditions and by road types. If the AV drives automatically e.g. always when on motorways, the 
human driver does not get experience of driving on motorway, etc. In the long run, the lack of 
driving experience affects the driving skills and capabilities. 

9.1.2.3 Quality of travel 
Quality of travel concerns the characteristics of the AV use from the users’ point of view. It includes 
the following topics: comfort and stress, use of in-vehicle time, traveling reliability and feeling of 
safety. 
Comfort describes whether the ride feels comfortable or uncomfortable (e.g. due to harsh braking or 
fast longitudinal or lateral acceleration). It can also refer to the convenience of the services enabled 
by AD. Stress refers to the user’s emotional stress (uncertainty, fatigue, distress, worry) related to 
the trip with an AV (e.g. stress due to uncertainty of AV behaviour or take-back-control situations; or 
decrease of stress due to removed need for searching a parking space or drive (manually) e.g. in 
congestion). Use of in-vehicle time refers to possible non-driving related secondary tasks in the 
vehicle like use of entertainment, which can be allowed if the driver is not constantly in charge of 
monitoring the environment. The actual in-vehicle activities depend also on the users’ choices, 
preferences and on e.g. their proneness to motion sickness. The use of in-vehicle time is related to 
the value of time when traveling. 
Traveling reliability in this context means primarily how well the trip duration can be predicted 
(travel time reliability), but it may also concern other aspects of the trip such as the costs of the 
journey, reliability of automated services, accessibility and reliability of travel chain. Feeling of safety 
refers to the subjective safety when traveling, i.e. whether the driver feels or experiences that the 
automated vehicle is driving safely and also ensures the safety of other road users. 

9.1.2.4 Transport offering 
Transport offering refers to the potential changes in mobility options available to users.  
Completely new mobility services can develop due to the introduction of AV (New possibilities for 
mobility services). If useful new services arise to meet people’s mobility needs (such as car sharing 
service, robotaxis, automated shuttles), this may lead to changes in car ownership.  
Vehicle availability means certainty that there is a vehicle available for a user when (s)he needs it. 
This is linked to the mode choice, car ownership and traveling reliability. 

9.1.2.5 Driving quality 
Driving quality relates largely to the changes in driving behaviour on a vehicle level (Vehicle 
operations) and how well it is able to drive but also on traffic flow level and how smooth it is. Driving 
quality concerns the translation of impacts on single vehicle operations to the road network in a 
wider scope. Changes in individual behaviour of vehicles, such as choice of headway and speed, have 
consequences on the speed patterns of a group of vehicles traveling in the same direction, reflected 
e.g. as shockwaves within the traffic flow. These sudden behaviour changes of single vehicles and 
the impact on them on traffic flow level depend on the capabilities of the AV, and the extent of 
impacts in specific situations depends, among others, on the penetration rate of AVs, their situation 
awareness and capabilities of car following, as well as on the traffic volume on the road. 
Synchronisation of speed patterns may occur with higher penetration rates of AV (or CACC), or in 
situations where overtaking is not possible and a platoon/queue of vehicles drives with close to 
equal speed. In manually driven vehicles, keeping a constant speed is not easy, and the speed of 
individual vehicles typically oscillates around a certain speed. The amount of oscillation depends for 
example on the state of the driver, possible distracting factors and the surrounding traffic situation. 
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AVs are better capable of keeping a certain set speed. This is especially true for connected vehicles, 
which can better anticipate upcoming traffic situations. Synchronised speed patterns lead to a 
smoother traffic flow with less disturbance, especially relevant for situations with high traffic volume 
and/or bottlenecks (e.g. accidents, lane closures). 
Variance in alignment of driving refers to the lateral alignment of a group of vehicles traveling in the 
same direction. Lateral position in the lane can affect the abrasion of the pavement and e.g. rut 
formation, if a platoon of vehicles drives exactly on the same track in a lane.  
Driving errors refer to mistakes in driving behaviour by individual vehicles/drivers. On the one hand, 
automation can reduce driving errors (e.g. by preventing unintended lane departures, obeying the 
speed limits or by not being distracted when driving), but on the other hand new driving errors can 
occur. For example, an early stage AV may not park exactly between the markings of a parking place 
or not be able to detect an incident on the road early enough, or an AV may misinterpret the road 
markings or suffer from errors in map information. 
Transitions from AD to driver refers to the situations when the driver is required or chooses to take 
back control of the driving task. This may have implications for the traffic flow, e.g. the vehicle may 
lower its speed temporarily until the driver is in the loop. Frequency of harsh braking can increase or 
decrease with AV compared to manual driving, largely depending on AV capabilities to perceive 
certain events such as stopped vehicles downstream early enough. This is closely related to 
Frequency of shockwaves, which may change depending on AV capabilities and on the traffic 
situation. Limited/extended visibility of AVs compared to manual vehicles refers to the sensor 
systems implemented in the AV and the visibility (detection of objects and the interpretation of the 
situation) they provide to the vehicle or driver when compared to the human capabilities in 
detecting the situation without technical support. This includes for example how well the immediate 
surroundings of the car are perceived, at which distances and in which angles the sensors work, and 
how reliably they provide information in different conditions (weather conditions, in case of an 
obstacle etc.). False/better anticipation of intentions is related to interpretation of information 
received by any sensors, AV vs. human. AVs (technology) may not be equally good as a human actor 
(the driver) in perceiving and interpreting all weak signals, or at the least AVs may not be capable of 
covering the huge variety of situations in road traffic.  Specifically, this can be seen in anticipating 
the intentions of other road users, pedestrians and cyclists in particular. On the other hand, AVs do 
not get fatigued or focus on other activities than driving. 

9.1.2.6 Behaviour and skills 
The topic ‘behaviour and skills’ is largely related to the personal mobility behaviour of individual 
users (and non-users) and the skills required for that. With the introduction of AVs, the daily mobility 
choices of the AV users may change in terms of Number of journeys made, choice of Destinations, 
Transport mode selection, Timing of journeys and Route selection.  
For example, automated valet parking may lead to driving more by car into the city centre instead of 
using public transport, as finding a parking space is often difficult in city centres (and some people 
do not like to park in narrow parking garages etc.), highlighted in busy hours. If car travel is more 
convenient, more people may choose to use a car instead of public transport or active modes. In 
partial automation, route choices may change e.g. to favour longer routes to travel on motorways 
and take use of a motorway pilot function. 
Harm by delays describes the perceived harm by travellers resulting from delays in traffic, addressing 
both emotional and practical aspects. This may change with AD, for example some delays may be 
considered less harmful if the time spent in the car can be used in productive ways, reflected in the 
value of time. 
Behavioural adaptation of non-AVs may occur if the drivers of manually driven vehicles start to copy 
driving behaviour of AVs, for example by using smaller or larger headways or by strictly obeying the 
speed limits. Behavioural adaptation may also apply to VRUs who start trusting that all vehicles will 
stop for them, if AVs are likely to do so, and may change their behaviour e.g. when crossing roads.  
Driving skills may be affected when ADF are mature enough to take over a large part of the driving. 
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Driving skills refer not only to manoeuvring the vehicle at the operational level but also to higher-
level skills such as focusing attention to the relevant, anticipating driving situations, interacting 
efficiently and safety with the other road users etc. It is expected that ADFs will at least in the short-
term work only in good conditions. Therefore, drivers need to drive themselves in bad conditions, 
which have a higher accident risk, especially when accompanied with less driving experience overall. 
(This may lead also to personal mobility impacts, e.g. less travel or less car travel during adverse 
conditions.)  
 

9.1.3 Impacts on transport system (Block 3) 

9.1.3.1 Safety 
Safety of road transport is defined indirectly in terms of Number of crashes and Severity of crashes 
for travelling (exposure) in road transport. A source of data are the public statistics in which severity 
can be found in four categories: fatal crashes, severe injury crashes, injury crashes, and property 
damages only (not, however, in all statistics). In addition, simulations and conflict techniques can be 
used to assess changes to traffic safety with AV. 

9.1.3.2 Efficiency 
Network efficiency refers to lane, link and intersection capacity and throughput in a regional 
transport network. Efficiency also refers to travel time (as part of the ‘Personal mobility’: Duration of 
journeys) and travel time reliability (Innamaa and Kuisma 2018). 
Road capacity can be measured as the maximum throughput which is the number of vehicles per 
hour through a particular road section or intersection approach, normalized to number of lanes and 
proportion of green time (where relevant) (Innamaa and Kuisma 2018). 
Peak period travel time along a route is discussed separately because during these hours, even a 
small reduction of capacity would have severe impacts in the areas where peak hour traffic exceeds 
the capacity already in the current situation. 

9.1.3.3 Infrastructure 
Automated vehicles can be connected to the Infrastructure (V2I) and thereby receive information 
collected by infrastructure based systems, and be able to utilize it. Quality of road surface, including 
road markings and road maintenance, is critical for automated vehicles as localisation can be based 
at least partly on road markings, and the AVs may have difficulties to detect damages on the road 
surface such as potholes. If all AVs position themselves strictly to the position of the lane, the quality 
of the road surface may suffer sooner than for manual driven fleet. Use of hard shoulders becomes 
important in high level of automation when hard shoulders may be needed as safety harbours in 
case of malfunctioning of the AV (as part of the minimal risk manoeuvring). If hard shoulders are 
dedicated to being the safety harbour for the stopped AVs, then they cannot be used as temporary 
lane. 

9.1.3.4 Environment 
Impacts on the Environment include both tailpipe Emissions and greenhouse gases (CO2, NOX, CO, 
PM10, PM2.5, VOC emissions in total per year and per vehicle-km or mile) and the Energy use or 
consumption of the vehicle. The direct energy/emissions impacts come from the change in the 
driving cycle. Energy consumption can be analysed by vehicle km travelled (vehicle fleet) or by 
person km travelled. Changes in vehicle propulsion (e.g., electric vehicles) may also have a significant 
effect on tailpipe emissions. Noise can be measured as the annual average of the proportion of time 
when the noise level is above a certain threshold (Innamaa and Kuisma 2018). In addition to the 
amount of emissions, also the environment where they are produced is of importance.  
Material use refers to all other material than moving power such as components needed to build 
AVs.   
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9.1.3.5 Travel behaviour / Mobility / Personal mobility 
A traveller may respond to new transport options, such as AV, by changing their travel behaviour. 
The Share of transport modes may change in road transport or in the whole transport system 
(affecting multimodality). There may be more or fewer trips affecting the Total number of journeys 
(per week, in total and per inhabitant) or changes in the Duration (in total and per inhabitant) and in 
Length of journeys (the total kilometres or miles travelled per week in a region). 

9.1.3.6 Land use 
The Need for parking slots refers to different types of spaces needed for parking, such as the need 
for underground parking (m2) and the space needed for street parking in city centre areas (m2). For 
example, the use of private cars, car sharing, features and AV functionalities and urban policy affect 
the amount of space needed (Rämä et al. 2018).  
Automated driving may increase the share of car trips out of all travelling. Due to its convenience 
and lower value of time, it may lead to an increase in urban sprawl and thereby affect the Density of 
housing. Planning and construction policy and offering of public transport services are means to 
influence density of housing. 
Location of employment refers to distance of employment in relation to the city centre and major 
housing areas (km on average). Use of AD in commuting and willingness of employees to commute 
longer trips have influence on land use. Also the requirements that AVs have for parking can 
influence the location of the employment. 

9.1.4 Impacts on societal quality of life (Block 4) 

9.1.4.1 Public health 
Morbidity refers to diseases or disabilities and takes into account the duration of the disease; it can 
be weighted by severity. Mortality is a measure for years of life lost and potential years of life lost. 
Road traffic can affect mortality and morbidity indirectly for example by increasing pollution and 
particles in the air and by influencing physical activity of citizens (the share of active transport 
modes), or directly through road crashes causing injuries and deaths.  

9.1.4.2 Individual Quality of life 
Individual Quality of life (QoL) refers to both the quantity and quality of life lived. It is accomplished 
as the outcome of Social, Physical, Mental and Economic wellbeing. QoL assumes that health is a 
function of length of life and quality of life; overall life expectancy by the amount of time lived in less 
than perfect health. Physical and mental wellbeing are directly linked to health; social and economic 
wellbeing are more indirectly linked to health but are also as such important indicators of QoL. 

9.1.4.3 Equity 
Equity means that all citizens have equal access to road transport services independent of road user 
type, social or economic background, car ownership or region they live in. In an optimal situation 
accessibility can be provided for all potential road users on a reasonable level between any desired 
locations. 
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9.2 Annex 2 – Illustrative example 

The mechanisms affected by IoT (results of Step 2 of the method) for the box Behaviour and skills for 
all AD modes are shown in Figure 26. For mechanisms coloured in orange, IoT is expected to have a 
direct impact when compared to the baseline, whereas for the mechanisms outlined in orange the 
impact is assumed to be more indirect. 
 
For the example of Automated valet parking (AVP), when compared to the baseline (automated 
parking with user supervision, user needs to assign free parking space), IoT is expected to have direct 
impacts on destinations of journeys, transport mode selection, timing of journeys and route 
selection, and secondary or less direct impacts on the number of journeys and driving skills. These 
changes then have implications for the three impact areas (in Step 3): The first five impact all three 
areas (mobility, safety and efficiency and environment), while Driving skills is relevant only for traffic 
safety. On the other hand, the AD mode Highway Pilot – Hazard warning is expected to only have 
minor impacts to Harm by delays when compared to the baseline of non-connected automated 
driving, due to the limited scope of the function. 
 
From the results of the data collection (done in Step 4), it was then concluded in Step 5 that AVP may 
lead to a mode shift favouring the personal car and may increase the number of trips made by car. 
This is likely to have a negative impact on traffic safety. On the other hand, AVP decreases the 
amount of driving looking for a parking space, therefore decreasing exposure to traffic, which leads 
to a positive impact on traffic safety. These mechanisms work in opposite directions, and more 
information is needed on demand of AVP in order to determine, which impact will be larger. 
 
For efficiency and environmental impacts of AVP, the results are similar. Traffic flow and emissions 
can be improved from removing the need to search for a parking space, but this impact can be offset 
by an increased number of vehicles driving into city centres due to the AVP service making it more 
convenient. Regarding personal mobility, increased accessibility in terms of reaching destinations is 
considered positive. 

 
Results for the remaining five boxes in Block 2 were defined in a similar way. In the last step (Step 6), 
overall potential impact mechanisms on the quality of life (health, well-being and equity) were then 

Figure 26 – Illustration of mechanisms directly (orange background) and indirectly (orange outline) impacted by IoT for 
each AD mode when compared to the baseline of non-connected automated driving 
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deduced. For example, AVP can lead to increase in social well-being due to increased accessibility of 
locations, but on the other hand lead to decrease in physical well-being if active travel modes such 
as walking and cycling are replaced by personal car use.  
 
 
 
 

 


