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Abstract 

This document represents D2.7, "Report on the implementation of the IoT platform". D2.7 describes 
the final status of the implementation of the open IoT platform for autonomous driving of the 
AUTOPILOT project. The report covers all the project pilot sites and use cases. It describes the IoT 
architecture implemented as part of the AUTOPILOT project. 
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Executive Summary 

This deliverable, D2.7, reports on the final IoT architecture developed as part of the AUTOPILOT task 
T2.3, "Development of the Open IoT Service Platform". 

The AUTOPILOT IoT service platform is a federation of several IoT platforms (referred to as 
proprietary IoT platforms) provided by the project partners, all being interconnected through an 
open oneM2M standard IoT platform, referred to as the "oneM2M interoperability platform". The 
proprietary IoT platforms collect data from connected devices. They exchange IoT data and events 
with the interoperability platform through oneM2M interworking proxies. 

Several IoT platforms have been deployed for the pilot sites: 

 FIWARE IoT platform, used in the Dutch pilot site, 

 Watson IoT Platform, used in the Dutch and Spanish pilot sites, 

 HUAWEI OceanConnect IoT platform, used in the Dutch pilot site, 

 Technolution MobiMaestro platform, used in the Dutch pilot site, 

 TIM oneM2M IoT platform, used in the Italian pilot site, 

 SENSINOV oneM2M platform, used in the French and Dutch pilot sites, 

 openMTC oneM2M platform, used in the Finnish pilot site. 

 MESIM IoT platform, used in the Korean pilot site. 

oneM2M Interworking proxies allow non-oneM2M-compliant platforms to be connected to the 
oneM2M IoT platform. 

Across the pilot sites, devices and vehicles are connected to the various IoT platforms. But their data 
may flow as required by the use cases from one platform to another allowing them to be shared 
across the whole IoT ecosystem. The vehicle AD functionality was extended to support IoT data for 
all the project use cases. 

To further facilitate interoperability between the IoT platforms, a Data Modelling Activity Group 
(DMAG) worked on specifying a common IoT data model for the project use cases and pilot sites. 
The common IoT data model is based on existing standards: SENSORIS for vehicle messages and 
detection events, and DATEX II for parking and traffic information. 
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1 Introduction 

1.1 Purpose of the document 

This deliverable, D2.7, reports the work being undertaken as part of the AUTOPILOT task T2.3, 
"Development of the Open IoT Service Platform". 

The document provides an overview of the AUTOPILOT open IoT architecture for autonomous 
driving, developed in six pilot sites: Finland, France, Italy, South Korea, the Netherlands, and Spain. 

An overview of the deployed IoT platforms, their capabilities, and statuses of deployment, purposes, 
and access instructions are provided. 

The document also provides an overview of the implementation of the IoT ecosystem in the pilot 
sites. 

The chapters 5 and 6 of the document provide an overview of the work done related to 
interoperability and the common IoT data models elaborated in the project. 

The last chapter includes the final evaluation of the work done in this task during the project. 

1.2 Intended audience 

This deliverable is a public report intended for both internal use by the AUTOPILOT partners and 
external use. 

2 Overview of the IoT Architecture Implementation 

This chapter provides an overview on the IoT architecture of AUTOPILOT, which has been specified 
as part of task 1.2 “IoT Architecture and Specification”. 

2.1 Functional Overview 

The AUTOPILOT IoT architecture builds on, and borrows building blocks from, relevant IoT 
architectures such as AIOTI1 and IoT-ARM2. It aims to provide a global IoT service coverage through 
features such as openness, flexibility, interoperability between IoT platforms, leveraging of 
standards for communication and interfacing, and federation of in-vehicle, road-side unit, and pilot 
site IoT platforms. 

                                                           
 
 
 
1
 Alliance for Internet of Things Innovation (AIOTI): https://aioti.eu 

2
 ARM-IoT: https://developer.arm.com/products/architecture/system-architecture 

https://aioti.eu/
https://developer.arm.com/products/architecture/system-architecture
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Figure 1. AUTOPILOT IoT Architecture: Functional View 

As shown in Figure 1, the AUTOPILOT IoT architecture has four main functional layers: 

 Things Layer: Includes the AUTOPILOT "things" (vehicles, cameras, drones, road side units, 
etc.) and external services provided by public offices or private web services. 

 Network Layer: Enables communication throughout the IoT ecosystem 

 IoT Layer: Enables the IoT functionality through a set of IoT building blocks: device 
management, context management, process & service management, semantics, analytics, 
and security. Each of these functional building blocks is specified in detail in the AUTOPILOT 
deliverable D1.3 [D1.3]. 

 Application Layer: Contains services that leverage the AUTOPILOT IoT. In AUTOPILOT, this 
includes services provided by the use cases to the AD vehicles and users (e.g., drivers, 
car/ride sharing customers, etc.). 

2.2 Component View 

Given that AUTOPILOT has several large-scale pilot sites, the architectural components of the open 
IoT platform (infrastructure, IoT devices, services, etc.) are inherently physically distributed. AD 
functions themselves have varying requirements in terms of speed of access (latency), availability, 
and range (covered area). Some localised mission critical functions, such as warning other vehicles in 
the immediate proximity that a pedestrian is jaywalking, need to be accessible within very low 
latency. Other functions, such as notification about a parking spot being made available, need to 
cover wider areas but are less demanding in terms of latency. As a result, the AUTOPILOT IoT 
platform was designed and implemented as a federation of IoT platforms. 

Figure 2 illustrates the AUTOPILOT federated IoT platform architecture. The term "federated", in this 
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context, means that there are several layers of IoT platforms deployed on a variety of physical 
infrastructures starting from the in-vehicle IoT layer to the top-level internet cloud-based IoT 
platform. 

 

 
Figure 2. Layers of the Federated IoT Architecture 

In this architecture data may flow from any level to any level as required by the use cases. At a given 
level, data may be processed to generate new information that may be published to an IoT platform 
at another layer. For example, image data submitted by a dash camera to the in-vehicle IoT 
platform, may be processed inside the vehicle, and upon detection of an object or hazard on the 
road a message may be generated and submitted to the road-side and/or cloud IoT platforms. 

Figure 3 shows the AUTOPILOT target IoT architecture. As shown in this diagram, devices, gateways, 
and in-vehicle and road-side IoT platforms exchange information (e.g., about detected objects, 
hazards, vulnerable road users, traffic lights, vehicle updates, etc.) with several distributed cloud IoT 
platforms. We distinguish the following two types of cloud IoT platforms. 

1. Proprietary IoT Platforms: These are used by some applications and use cases to exchange 
specific data with specific devices or vehicles. For example, the Brainport car/ride sharing 
service and automated valet parking service use Watson IoT Platform™ to collect data from 
their vehicles. Several proprietary IoT platforms are used in AUTOPILOT for various 
purposes, use cases and pilot sites. These are introduced in chapter 3. 

2. oneM2M Interoperability Platform: This is the central IoT platform for exchanging IoT 
messages relevant to all autonomous driving (AD) vehicles. 
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Figure 3. Autopilot Federated IoT Architecture 

The proprietary IoT platforms are networked through the oneM2M interoperability platform and are 
connected to this through oneM2M interworking gateways. The interworking gateway of a given 
proprietary IoT platform may be configured to share selected data types with the interoperability 
platform. Such data then becomes accessible to all the connected IoT platforms through the 
oneM2M interoperability platform. This is particularly useful for sharing data relevant to all the AD 
vehicles and applications, such as detected hazards, vulnerable road users, objects, etc. 

 

3 Implemented IoT Platforms 

This chapter provides an overview of the deployed IoT platforms, their components, features, and 
intended use. Links to the deployed platform instances, their documentation, source code (if 
applicable), client-side code, and instructions on how to access the IoT platforms are also provided 
when applicable. 

This chapter reports on the following types of activities: 

 Deploying, customising, and configuring the project IoT platforms, 

 Connecting devices to the IoT platforms and testing their connectivity, 

 Developing and deploying the oneM2M interworking proxies to connect the proprietary 
pilot site IoT platforms to the central oneM2M interoperability platform. 

Other work related to designing and implementing the common IoT exchange data models is 
reported in Chapter 6. 

3.1 Watson IoT Platform™ 

This section provides an overview on the IBM Watson IoT Platform and its deployment in 
AUTOPILOT. 

3.1.1 Overview of Watson IoT Platform™ 

This section provides an overview of the IBM Watson IoT Platform™ and its key concepts. Further 
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details are provided in the official documentation of the platform [IBM18a]. 

Watson IoT Platform™ (cf. Figure 4) is an IoT broker and device manager, which can be connected to 
a wide variety of devices, gateways, and applications. It allows devices and applications to publish 
and subscribe to data. The platform provides secure communication to and from any devices, using 
MQTT and TLS. It also provides a dashboard for monitoring the devices. 

Device events published on Watson IoT platform™ may be pushed to a database for storage. By 
default, Watson IoT Platform™ supports the IBM Cloudant database [IBM18b]. 

 

Figure 4. Architecture of the Watson IoT Platform™ 

The following subsections introduce the key concepts of Watson IoT Platform™. 

3.1.1.1 Devices 

A device can be anything that has a connection to the Internet and that can push data into the cloud. 
However, devices cannot communicate directly with other devices, instead devices accept 
commands from applications, and send events to applications. Devices in the Watson IoT Platform™ 
are identified by a unique authentication token. They must be registered before they can connect to 
the Watson IoT Platform™. The Watson IoT Platform™ recognises two classes of device; managed 
devices and unmanaged devices.  

Managed devices are defined as devices that contain a device management agent. A device 
management agent is a set of logics that allows the device to interact with the Watson IoT 
Platform™ Device Management service by using the Device Management Protocol. Managed devices 
can perform device management operations, including location updates, firmware downloads and 
updates, reboots, and factory resets. Management operation may be triggered through the main 
Watson IoT Platform™ dashboard or the device management API. Device management can also be 
extended to include custom device management actions. 

Unmanaged devices are all devices without a device management agent. They may connect to the 
Watson IoT Platform™ and send and receive events and commands, but they cannot send device 
management requests or perform device management operations. 

3.1.1.2 Gateways 

Gateways are specialised devices that have the combined capabilities of an application and a device, 
which allows them to serve as access points for other devices. Devices that cannot connect directly 
to the Internet can access the Watson IoT Platform™ service by first connecting to the gateway 
device. Gateways have all the functions of a device, but can also publish and subscribe on behalf of 
the devices connected to them. 

Examples of gateways are: 

 A software in a vehicle that collects data from the vehicle sensors and publishes them to 
Watson IoT Platform™; 
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 A server that receives image data from car park cameras or drones, detects parking spot 
statuses, and publishes the results to Watson IoT Platform™. 

3.1.1.3 Applications 

An application is anything that has a connection to the Internet and interacts with data from devices 
and controls the behaviour of those devices. Applications identify themselves with the Watson IoT 
Platform™ by using an API key and a unique application ID. Unlike devices, individual applications do 
not need to register before they can connect to the Watson IoT Platform™. However, they must use 
a valid API key that has been previously registered. 

Examples of applications are: 

 The car/ride sharing service, which listens to traffic and environmental events published by 
devices and gateway through Watson IoT Platform™, and schedules, accordingly, pick-ups, 
drop-offs, and vehicle routes; 

 The AVP service, which listens to events on the car park and to the positions and statuses of 
vehicle being parked to assign parking spots and routes to the parking spots; 

 The autonomous driving (AD) functionality in an AD vehicle, which listens to external events 
shared through Watson IoT Platform™. 

3.1.1.4 Events 

Events are the mechanism by which devices publish data to the Watson IoT Platform™. Devices 
control the content of their messages  and assign a name for each event that is sent. The Watson IoT 
Platform™ uses the credentials that are attached to each event received to determine which device 
sent the event. This architecture prevents devices from impersonating one another. Applications can 
process events in real time and see the source of the event and the data contained in the event. 
Applications must be configured to define which devices and events they subscribe to. 

Examples of events are: 

 Car probe data submitted by vehicle gateway; 

 Identification of an object, obstacle, vulnerable road user (VRU), or hazard on the road; 

 Parking spot and occupancy detection. 

3.1.1.5 Commands 

Commands are the mechanism by which applications communicate with devices. Only applications 
can send commands, and the commands are sent to specific devices. The device must determine 
which action to take on receipt of any given command. Devices can be designed to listen for any 
command or to subscribe to a specified list of commands. 

3.1.2 Communication Protocol 

IBM Watson IoT Platform™ supports version 3.1.1 of the MQTT messaging protocol [MQTT]. It 
accepts any content that is permitted by the MQTT standard. MQTT is data-agnostic, so, in theory, it 
is possible to send images, texts that are in any encoding, encrypted data, and virtually every type of 
data in binary format. 

The IBM open source Watson Developer Cloud APIs (https://github.com/watson-developer-cloud) 
provide client APIs (https://github.com/ibm-watson-iot) for Watson IoT Platform™ in various 
programming languages (Java, NodeJS, and Python). These APIs may be used to facilitate interaction 
with Watson IoT Platform™. 

3.1.3 Watson IoT Platform™ Deployment and Access 

IBM is providing two Watson IoT Platform™ instances for AUTOPILOT: 
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 Development: We recommend that you use this instance as a starting point for learning, 
development, experimentation, and testing purposes. You may want to use this instance to 
create virtual (fake) devices and test their connection to the platform. 

 Production: This instance should be used for official project demonstrations, and for 
connecting real devices. 

Information about the deployment status and access to the above instances is provided in Table 1 
below. 

The Watson IoT Platform™ instances will be connected to the oneM2M interoperability platform 
(see section 5) through oneM2M connectors, called interworking proxies, developed by SENSINOV 
and IBM IE. A oneM2M connector is already deployed on the TNO servers for connecting the 
development Watson IoT Platform to the oneM2M platform. 

Table 1. Watson IoT Platform – Deployment Status and Access 

Platform Watson IoT Platform™ 

Hosting IBM Cloud 

Deployment Status Development Deployed Development instance, for learning, development, 
experimentation, and testing purposes 

Production Deployed Production instance, for official project 
demonstrations, and for connecting the real devices 

OneM2M 
Interworking 
Gateway 

Deployed Bidirectional communication between the oneM2M 
interoperability platform and Watson IoT Platform. 
One connector for the development instance is 
deployed on the TNO servers.  

Purpose/Pilot Site Currently used in the Brainport and Vigo pilot sites for car/ride sharing, AVP, and 
parking spot detection 

Standard/Protocol Watson IoT Platform™ 
oneM2M connector: deployed on TNO servers 

URL Development https://2j73n2.internetofthings.ibmcloud.com 

Production https://btjftu.internetofthings.ibmcloud.com 

Connected Devices 
and Applications 

Development Cars/devices/applications collecting and using parking spot 
availabilities (DLR), car/ride sharing service, parking spot web 
service, cameras and corresponding applications for vulnerable 
road user detection (CTAG) 

Production None 

Access Process The Development and Production Watson IoT Platform™ instances are available to all 
the pilot sites and use cases. Access to these instances may be requested from IBM 
IE, through one of the following points of contact: 

 Anton Dekusar adekusar@ie.ibm.com 
 
Any devices and device types to connect to the Watson IoT platforms must be 
registered in advance by the IBM IE point of contact. You will be requested to 
provide the device or device type data schemas. Once the devices are registered, you 
will receive credentials for each device. 
 
Device credentials must not be shared with other partners or across devices. 
 
Data submitted by one device must comply with the data schema provided for the 
registration of the device. Any changes to the data schemas must be validated by the 
IBM IE point of contact before being able to submit data from devices. 

Restrictions In addition to the above conditions, please note that personal information, images, 
or videos, must not be sent to the Watson IBM Platform™ instances. 

mailto:adekusar@ie.ibm.com
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3.1.4 Interfacing with Watson IoT Platform™ 

Example Java source code to interact with Watson IoT Platform™ is provided in the project GitLab 
repository iot-central, under the folder entitled "watson". 

3.2 FIWARE 

This section provides an overview of FIWARE, its features, and deployment status in AUTOPILOT. For 
detailed information about FIWARE, please refer to the FIWARE wiki [FW]. 

FIWARE IoT chapter provides the generic enablers (GE) to allow things to become available, 
searchable, accessible, and usable. In this context, "things" mean any physical object, living 
organism, person or concept interesting from the perspective of an application and whose 
parameters are totally or partially tied to sensors, actuators or combinations of them. 

IoT chapter uses the NGSI standards for data exchange. 

 The NGSI-10 interface [NGSI10] is used for exchanging information about entities and their 
attribute, i.e., attribute values and metadata. 

 The NGSI-9 interface [NGSI9] is used for availability information about entities and their 
attributes. Here, instead of exchanging attribute values, information about which provider 
can provide certain attribute values is exchanged. 

3.2.1 FIWARE Architecture 

IoT chapter architecture deployments vary from simple scenarios (e.g., connecting few devices using 
standard IoT communication protocols to the data chapter Context Broker) to more complex 
scenarios distributed across a large number IoT networks, connecting IoT gateways and IoT nodes, 
and providing advanced composition and discovery functions. 

IoT GEs are spread over two different domains as shown in Figure 5: 

 IoT Backend: Comprises the set of functions, logical resources, and services hosted in a 
cloud data centre. Northward, it is connected to the data chapter Context Broker, so IoT 
resources are translated into NGSI context entities. Southward, the IoT backend is connected 
to the IoT edge elements, that is all the physical IoT infrastructure. 

 IoT Edge: Comprises all on-field IoT infrastructure elements needed to connect physical 
devices to FIWARE Applications. Typically, the IoT edge comprises the IoT end-nodes, IoT 
gateways and IoT networks (connectivity). The IoT Edge and its related APIs facilitate the 
integration of new types of gateways and devices, which are under definition in many 
innovative research projects, and warranty the openness of FIWARE IoT architectures.  
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Figure 5. FIWARE IoT Architecture 

3.2.2 IoT Broker GE reference implementation: AERON 

The IoT Broker is specified as a lightweight and scalable middleware component that separates IoT 
applications from the underlying device installations. The IoT Broker implementation available 
through the FIWARE Catalogue is the reference implementation of this Generic Enabler. This 
implementation satisfies all properties described in the specification of the Generic Enabler. More 
details about the IoT Broker GE can be found in the FIWARE wiki [FW]. 

IoT Broker is integrated with three other components: IoT Discovery (ConfMan), IoT Knowledge 
Server, and FIWARE (Orion) Context Broker. Table 2 provides links to the IoT Broker source code, 
Docker images and manuals. 

Table 2. Web Links to IoT Broker Artifacts 

Artifact Link 

Source Code https://github.com/Aeronbroker/Aeron 

Binaries from FIWARE Catalogue https://catalogue.fiware.org/enablers/iot-broker 

Docker Image https://hub.docker.com/r/fiware/iotbroker/ 

Documentation http://fiware-iot-broker.readthedocs.io/en/master/ 
https://forge.fiware.org/plugins/mediawiki/wiki/fiware 

Online Course https://edu.fiware.org/course/view.php?id=33 

 

3.2.3 IoT Discovery GE alternative implementation:  NEC ConfMan 

The NEC Configuration Management or NEC ConfMan is an implementation of the FIWARE IoT 
Discovery Generic Enabler. This implementation is specifically designed to interwork with the IoT 
Broker GE FIWARE reference implementation, serving as the registry of FIWARE NGSI context 
providers. The detailed information about the IoT Discovery GE can be found in [FWa]. 

ConfMan is responsible for discovering the availability of context. The availability of context must be 
through the registrations made by IoT Agents (i.e., data providers). By registering, data providers 
make their access endpoints available to the data consumers. Data providers offer information 
about context entities (i.e., virtual entities) and their attributes (e.g., measurement values, 

https://github.com/Aeronbroker/Aeron
https://catalogue.fiware.org/enablers/iot-broker
https://hub.docker.com/r/fiware/iotbroker/
http://fiware-iot-broker.readthedocs.io/en/master/
https://forge.fiware.org/plugins/mediawiki/wiki/fiware
https://edu.fiware.org/course/view.php?id=33
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metadata). The role of IoT Agents can be taken by either the Data Handling GE in IoT Gateways or 
the Back-end Device Management GE. Other IoT Backend systems may also provide context 
information. 

Typically, context source availability information is forwarded to the FIWARE Context Broker GE. This 
allows context information (i.e., information generated by or coming from the "things") to be 
available and accessible to applications. ConfMan is integrated with two other components: IoT 
Broker and IoT Knowledge Server. The ConfMan source code is accessible at 
https://github.com/Aeronbroker/NEConfMan. 

3.2.4 Crowd Estimation Service 

The AUTOPILOT IoT architecture’s IoT layer includes the "Analytics" building block. To fulfil the 
functionality required by this building block, NEC FIWARE-based IoT Platform includes an analytics 
component which is integrated with FIWARE IoT Broker and IoT Discovery. The name of this 
component is Crowd Estimation and Mobility Analytics (CEMA).  

CEMA works on raw data which is received from IoT devices deployed in the field such as Wi-Fi 
sensors to count the people and estimate crowdedness in certain areas such as road sides. This 
service can be useful to understand pedestrian traffic and notify the autonomous vehicle 
beforehand about the expected crowdedness levels of nearby roads. This could be used for better 
routing planning. Moreover, a Wi-Fi sniffing device with GPS sensors is placed in autonomous cars 
for mobile sensing. 

Application developers can access CEMA analytics results through NGSI subscriptions or queries 
through the IoT broker. CEMA analytics results are also showcased in a dashboard interface in real 
time.  Furthermore, Semantic Mediation Gateway component sends real-time CEMA analytics 
results from the FIWARE IoT Broker to the oneM2M using NGSI and MCA interfaces, respectively. 
Lastly, the format of the CEMA messages follows the data models of the AUTOPILOT.  This can 
enable data consumers of the oneM2M (e.g., autonomous driving vehicles) easily make use this 
data.  

3.2.5 FIWARE Status of Deployment and Access 

The deployment status and access procedure of the FIWARE components are summarised in Table 3.  

FIWARE Aeron Broker and NEConfMan components are currently deployed in the servers which are 
provided by NEC in Heidelberg, Germany. These servers are dedicated for the Brainport pilot site and 
in more general to the central IoT platform. The servers can connect to the oneM2M platform in 
Brainport pilot site.  

Since the server is inside NEC, the components currently reside inside the internal NEC VPN. 
However, the access to the FIWARE IoT Broker and Discovery can be provided through whitelisting 
certain IP addresses. 

Currently, CEMA service is available through the IoT platform service. CEMA and the IoT platform 
reside in the NEC server and CEMA outputs can be openly shared with all partners. CEMA is 
integrated with a lighter version of the IoT Broker we can be referred as the Thin Broker. The CEMA 
service was tested and access was provided to the use case developers. 

Like Aeron, Scorpio instances are currently hosted on an NEC server. Public access can be organized 
through IP white listing. The source code for Scorpio is publicly available at Github.  

Table 3. FIWARE – Deployment Status and Access 

Platform FIWARE 

Hosting NEC Servers, NEC Laboratories Europe, Heidelberg, Germany 

https://github.com/Aeronbroker/NEConfMan
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Deployment Status AERON Broker Deployed Dedicated to the Brainport pilot site 

NEConfMan Deployed Dedicated to the Brainport pilot site 

CEMA Deployed Dedicated to the Brainport pilot site 

ScorpioBroker Deployed Used to test federation of information from multiple 
pilot sites 

oneM2M 
Interworking 
Proxy 

Deployed The FIWARE-oneM2M interworking proxy was 
successfully tested 

Purpose/Pilot Site Used primarily for the Brainport pilot site 

Standard/Protocol HTTP (Rest) 

Connected Devices 
and Applications 

 

Access Process Since the server is inside NEC, the components currently reside inside the internal 
NEC VPN. However, the access to the FIWARE IoT Broker and Discovery can be 
provided through whitelisting certain IP addresses.  

Restrictions In addition to the above conditions, please note that personal information, images, 
or videos, must not be sent to the NEC FIWARE broker instances. 

3.2.6 NGSI-LD and Scorpio Broker Implementation 

NEC has adapted the new ETSI ISG CIM standard NGSI-LD, which is an evolution of NGSI. The Scorpio 
Broker implementation is available at https://github.com/ScorpioBroker/ScorpioBroker. 

3.2.6.1 NGSI-LD  

NGSI-LD defines an API for context interaction as well as an entity based data model to represent 
context data. 

Entity Model 

Following its predecessor, the data model of NGSI-LD is centred around the entity concept. An entity 
is described by its type and a unique identifier. As shown in Figure 6 entities can have properties and 
relationships. These two types of attributes allow us to have a Digital Twin of a real world object not 
only clearly representing properties but also relationships to other entities, which can be followed. 
This enables users of NGSI-LD to represent Digital Twins in a knowledge graph.  

 

Figure 6. NGSI-LD Knowledge Graph 

https://github.com/ScorpioBroker/ScorpioBroker
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APIs 

NGSI-LD defines a set of APIs which are the successors of NGSI-9 and NGSI-10 interfaces. In the 
following section we will give a short overview of most important functionalities of the API. The 
whole spec can be found at the ETSI website. The defined APIs provide methods context information 
provisioning, i.e. create entity, update an entity, partial update of an entity, append attributes and 
delete.  

For the context information consumption 3 types of access are provided:  

 Retrieval of a specific entity by its ID 

 Querying entities based on provided filters, e.g. by its type, attribute value or geo location 

 Subscription to changes in entities. Filters like in queries can be used here as well 

As context data providers defines two types of providers. 

 The Context Producer, which will actively push its information towards the broker using the 
context provisioning methods. 

 The Context Source, which is supports the full set of data consumption methods and register 
the provided entities with the broker. Context data from Context Sources is then pulled by 
the broker when needed. 

For the, above mentioned, registration of available entities NGSI-LD defines the csourceRegistrations 
interface which is used to provide a set of metadata of the available entities. The registrations of a 
ContextSource can contain a combination of, available IDs, available types, available attributes, a 
coverage area, an operation area and additional custom metadata. 

@context usage for integration 

The @context entry is a fundamental aspect of JSON-LD and hence for NGSI-LD. In JSON-LD all 
entries must be represented as URI, which can make the payload of a document rather big. 
Therefore JSON-LD has defined the @context entry which does not only allow to map the URIs to 
short names but also to map more complex structures in a document into a simplified version. 
Addition a set of functions to compact, expand and flatten documents based on the @context entry 
was defined by JSON-LD. 

3.2.6.2 Scorpio NGSI-LD implementation, deployment, and integration 

NEC has made one of the first implementation of the new NGSI-LD standard called the Scorpio 
Broker. In order to have flexible deployment options and scalability Scorpio is designed using a 
microservice architecture. As technology base Scorpio is using Spring Cloud to have individual 
microservices implementing functional aspects of the NGSI-LD standard.  
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Figure 7. Scorpio Architecture 

As shown in Figure 7, there is a micro service for entity creation, updating, appending and deletion 
request, the EntityManager. Two microservice for entity retrieval, the QueryManager and the 
SubscriptionManager, which respectively provide a query and subscription functionality for entities. 
Another microservice is the RegistryManager, which provides access to the CSourceRegistration 
information of context sources and context providers accessible through the broker. Additionally, 
there is the Storage Manager, which unlike the other microservices does not provide a REST 
interface towards the user but is responsible to properly persist entities and is supporting the 
QueryManager by using the capabilities of the used Postgres database to efficiently perform 
complex queries. For a fast and reliable communication between the microservices the Apache Kafka 
message bus is used. 

3.2.6.3 Federation setup 

Scorpio is supporting a federated setup of multiple instances. The federation setup is realized 
through the Context Source Registry. For AUTOPILOT the suggested setup is a hierarchical 
federation.  

 

Figure 8. Federation setup based on geo properties 
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As shown in Figure 8, each broker knows a federation broker, which provides access to all its 
children. Siblings do not have a direct relationship but communicate through their federation broker. 
The suggested federation criteria for AUTOPILOT, but also other use cases, are to design a federation 
based on geographical spatial information.  

This means a service relying on NGSI-LD would ask for context information filtered by a geographic 
area to a European top-level broker. The top-level broker would be based on geo data and additional 
filters, like type of entity, look up the which of its children to ask for the context information. This 
behavior is redone by the lower level brokers till the request information is reached. 

3.2.6.4 Integration with FIWARE IoT Brokers 

The NGSI-LD data format is not directly backward compatible with the NGSI V2 data format.  Even 
though a basic backward compatibility can be provided with a correct usage of the @context entry, 
some of the existing information, especially the metadata field in NGSI V2, can be lost or not 
correctly interpreted, e.g. relationships might by indicated by a prefix or an entry is a timestamp and 
that information is stored in the metadata. 

Hence, we developed two approaches to overcome this problem. In our initial approach we adapted 
an existing NGSI V2 to NGSI-LD translator, provided by FIWARE members, to support the most 
common NGSI V2 data scenarios, in the AUTOPILOT context. Based on this translator we created a 
Context Producer for NGSI V2 data sources.  

Additionally, we developed a configurable NGSI V2 Input microservice for Scorpio. This microservice 
has all the existing common scenarios from the translator as well as configuration options to define 
which NGSI V2 attribute prefix is a relationship and which metadata indicates which type of attribute 
is provided. 

3.3 HUAWEI OceanConnect Platform 

This section provides an overview of the Huawei OceanConnect IoT platform based on the official 
Huawei documentation [HOC]. 

The Huawei OceanConnect platform is an open ecosystem built on IoT, cloud computing, and Big 
Data technologies. It provides over 170 open APIs and serial agents that enable application 
integration, simplify and accelerate device access, guarantee network connection, and realise 
seamless connection between upstream and downstream products for Huawei partners. 

The Huawei OceanConnect IoT platform connects in a secure way IoT devices to the IoT cloud 
platform, enabling bidirectional communication to easily collect data and deliver commands 
between devices and the platform. 

The key features provided by the Huawei OceanConnect IoT platform are: 

 Agile and Easy-to-Use Device Integration: OceanConnect supports more than 20 
mainstream cable and wireless IoT protocols. It is also pre-integrated with mainstream IoT 
chips and modules. 

 Complete and Highly Efficient Device Management: OceanConnect's device management 
portal provides powerful functions and a user-friendly GUI for managing and configuring 
devices, visualising their statuses, identifying faults, and performing firmware/software 
upgrade and maintenance. 

 Flexible and Open Applications: The platform provides over 170 APIs and functions for 
device management, data, and rules, allowing users to quickly create network. 

 Highly-Concurrent and Highly-Reliable Cloud Services: Hundreds of millions of connections 
are supported with a service reliability of 99.9%. In addition, the Huawei OceanConnect IoT 
platform provides E2E security protection, device-level certification/authentication, low-
power optimisation, and complete application-level access control. 
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3.3.1 Huawei OceanConnect IoT Platform Architecture and Capabilities 

Figure 9 depicts the Huawei OceanConnect IoT platform architecture. The supported functionalities 
are briefly described in this section. For more further please refer to the platform official 
documentation [HOC]. 

 
Figure 9. HUAWEI OceanConnect IoT Platform Architecture 

 Cloud Inter-Networking Gateway (CIG): The CIG is OSGi-based [OSGi] and comprises 
modules that transmit messages between IoT devices and the IoT platform and supports 
multiple communication protocols including TCP, UDP, MQTT, CoAP, and LWM2M. 

 IoT Agent: Serialised IoT Agents (such as Agent Rich, Agent Lite, Agent Tiny, and Agent IPC) 
are deployed on different types of gateways and IoT devices. Multi-vendor devices can be 
quickly integrated with the cloud platform. The Agents are pre-integrated with near-field 
communication protocols such as Z-Wave, ZigBee, Wi-Fi, and Bluetooth, and are used to 
manage data links. 

 Device Management: Bidirectional data channels between devices and the IoT platform are 
used for device data reporting and remote control, including full-lifecycle management 
functions, such as getting devices online, maintenance, network connections, alarms, report 
analysis, upgrade, and deregistration. 

 Rule Engine: Simplified and flexible rules enable linkage and triggering of messages, 
notifications, and alarms between devices. 

 IoT Data Analysis: The Huawei OceanConnect IoT platform processes concurrent real-time 
data, stores mass data, computes data, and exposes data APIs. 

 Service Operation and Management Portal: The portal consists of the following modules: 
application management, device management, reports management, rule engine, software 
management, sub-account management, and service status statistics. 

 API Gateway: OceanConnect exposes over 170 types of functions, such as device 
management, rule engine, and data analysis, helping developers quickly create new 
applications. 
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3.3.2 Connecting Applications and Devices to OceanConnect 

This section provides the high-level principles of connecting applications and devices to 
OceanConnect. For more details, please refer to section "Open Capabilities of OceanConnect" of the 
platform's official documentation [HOC]. 

Applications requiring access to OceanConnect need to be authenticated first. Once an application is 
successfully authenticated it may perform the following actions: 

 Collect device data from the IoT connection management platform using either an active 
query or data subscription. 

 Issue commands to a specified sensor through the IoT connection management platform. 
 Issue rules to the IoT connection management platform allowing response events and 

commands to be triggered based on the rules. 
 Subscribe to device information (events) from the platform. 

Devices may be connected to OceanConnect in two steps: 
1. Connect the device to the IoT connection management platform either directly or indirectly 

through a gateway. Direct connection may rely on near-end integration (i.e., device 
integrates the IoT Agent Lite with the system and invokes the interface opened by the Agent 
Lite) or remote interrogation (i.e., device is interconnected to the CIG, and a plug-in is 
compiled and sent to the CIG to enable the device to access the platform). Gateways may 
be connected through an Agent (Rich) or Agent Lite depending on the network capabilities 
and the communication protocol used between the device and the gateway 

2. Based on the selected access mode, determine the Agent to be used, and then use the API 
provided by the Agent to complete integration development and implement data reporting, 
and command receiving.  
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3.3.3 Interacting with OceanConnect: Open APIs 

 
Figure 10. Overview of Huawei OceanConnect IoT Platform open APIs 

OceanConnect provides a set of APIs for developers to use for different purposes. The 
OceanConnect IoT Platform open APIs are depicted in Figure 10 and introduced below. For further 
details, please refer to section "Open APIs of OceanConnect" of platforms official documentation 
[HOC]. 

 API Software Development Kit (SDK): Provides developers with interfaces to integrate (or 
newly develop) open capabilities of the OceanConnect on a mobile APP. 

 Platform Northbound API: Supports six capabilities opened to application developers, 
including authentication, device management, data collection, device service invocation 
(command issuing), rule issuing, and message pushing. 

 Agent: Provides a gateway integration API, a Z-wave sensor integration API, and a ZigBee 
sensor integration API. 

 Agent Lite: Currently, the Agent Lite is provided through the SDK, and the supported 
development languages are Android and the C programming language. The Agent Lite is 
applicable to gateway integration and device integration. 

 CIG: Provides an API for northbound sensor integration. On the CIG, Northbound transport 
protocol and integration have already been completed (currently, only interconnection with 
the Huawei Northbound module is supported). Developers only need to develop the data 
format conversion plug-in on the CIG. The CIG also provides APIs that can be invoked by 
developers. The CIG API document and development guide are not yet released on the 
Huawei Developer website. 
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3.3.4 Huawei OceanConnect - Enterprise Application Integration (EAI) IoT Server 

The Huawei OceanConnect platform provides Device Connection Management through Service 
Orchestration, see Figure 10. The collected IoT data is stored, processed and forwarded to back end 
systems, e.g., applications. 

There might be situations where the Huawei OceanConnect platform needs to support additional 
requirements and provide the back end system internally, in Huawei OceanConnect, and extend its 
functionalities. In this case, additional modules, such as the EAI (Enterprise Application Integration) 
IoT server described in this section, can be used as a middleware or a backend system with tailored 
functionalities to support these additional requirements. 

This Huawei OceanConnect EAI middleware offers: 

 Rapid Prototyping 

 Efficiency, Robustness and Full Scalability 

 Monitoring and Quality of Service 

 Can be deployed and distributed also on other hosts 

 It complies with all known communication standards. 

 In particular, the Huawei OcenConnect EAI supports the following key functionalities, see Figure 11: 

 Geofencing Engine: used to enable the Geofencing/Geofetching service in the Car 
Rebalancing use case. It is implemented using Geolocation information received from IoT 
devices, such as vehicles and smart phones and geofencing windows received from vehicles 
that need to locate IoT devices located in these geofencing windows. The used 
communication protocols are MQTT and HTTP.  

 Virtual Device Management: used to manage Virtual Devices enabling remote access. 
 

 
Figure 11. Overview of Huawei OceanConnect EAI IoT Server 

Figure 12 shows the possible communication interfaces between the Huawei OceanConnect EAI and 
the Huawei OceanConnect Ecosystem components. 
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Figure 12. Huawei OceanConnect EAI positioning in the Huawei OceanConnect ecosystem 

The Huawei platform is also supporting an oneM2M Interworking Proxy Entity (IPE), which is a 
specialized oneM2M AE (Application Entity) that allows the oneM2M system to interact with any 
non-oneM2M system, in a seamless way, through the Mca interface, see [oneM2M-TR-0039]. It has 
the capability to remap a specific data model to oneM2M resources and maintain bidirectional 
communication with the non-oneM2M system. In particular in the case of the Huawei IoT platform 
the IPE is remapping the MQTT interface to a Mca interface and vice-versa.  

The IPE is integrated in the EAI and it supports the oneM2M MCA interface (using communication 
pipes) towards/from the oneM2M platform. 

3.3.5 OceanConnect Deployment and Access 

HUAWEI provides an instance of OceanConnect for the Brainport pilot site. A summary of the 
deployment status and access to the platform is provided in Table 4. 

Table 4. HUAWEI OceanConnect Platform – Deployment Status and Access 

Platform HUAWEI OceanConnect IoT Platform 

Hosting OceanConnect Platform 

Deployment Status IoT Platform One development instance is deployed and available to use, 
for learning, development, experimentation, and testing 
purposes 

oneM2M 
Interworking Proxy 

The oneM2M interworking proxy is implemented and used in 
the care rebalancing use case 

Purpose/Pilot Site To be used primarily for the Brainport car rebalancing/relocation 

Standard/Protocol HTTP/MQTT 

URL http://developer.huawei.com 

Connected Devices 
and Applications 

Solutions cover Smart Home, Internet of Vehicles, Public Utilities 

Access Process The relevant to the Brainport car rebalancing/relocation development instances are 

http://developer.huawei.com/
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available to the Brainport pilot site. Access to these instances may be requested from 
Huawei Technologies, through the following points of contact: 

 Liuxin Walle walle.liuxin@huawei.com 

 Lorenzo Viola lorenzo.viola@huawei.com 
Further instructions and conditions regarding access will be provided in due time. 

Restrictions In addition to the above conditions, please note that personal information, images, 
or videos, must not be sent to the Huawei platform for Automotive service 
instances. 

3.4 TIM IoT Platform 

3.4.1 Overview of the TIM IoT Platform 

The TIM IoT platform is based on the oneM2M standard [ONE17]. TIM provides the oneM2M 
platform as PaaS (Platform as a Service). Figure 13 shows a high-level architecture of the platform. 

 
Figure 13. High-Level Architecture of the TIM oneM2M Platform 

The platform is based on the Ocean [OIP17] open source project. Its main features are: 

 Compliance with the oneM2M standard, 

 Southbound and northbound Rest APIs for data storage and sharing, 

 Data sharing by means of pull and push (subscription/notification), 

 URIs for identifying resources, 

 Web console for resource management and provisioning, 

 Web console for administrators. 

Security in the TIM oneM2M platform is based on the following features. 

 oneM2M services and APIs are exposed through SSL (HTTPS). 

 Authorisation is based on credentials (username/password) associated with a specific user 
(tenant). 

 An Access Control Policy (ACP) needs to be created for each Application Entity. ACP is 
defined as a set of conditions that determine whether entities are permitted to access a 
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protected resource. 
 

3.4.2 TIM oneM2M Platform Deployment and Access 

TIM provides an instance of its oneM2M IoT platform on TIM Self Data Center, a commercial 
platform for hosting, managed by TIM. The platform is exposed on public Internet at https://icon-
lab.tim.it. The TIM oneM2M status of deployment and access is summarised in Table 5. 

Table 5. TIM oneM2M Platform – Deployment Status and Access 

Platform TIM oneM2M Platform 

Hosting TIM Self Data Center 

Deployment Status One instance is deployed and available to use 

Purpose/Pilot Site Collect data from all the Livorno pilot site use cases: 

 Highway use cases: 
o Hazard (puddles) on the roadway 
o Roadway works with traffic control centre in the loop 

 Urban Driving use cases:  
o Pedestrian detection with camera 
o Connected bicycle 
o Potholes detection 

Standard/Protocol oneM2M 

URL https://icon-lab.tim.it 

Connected Devices 
and Applications 

Environment sensors (temperature, humidity, pollution, rain, sound level pressure), 
parking status, traffic flows, smart waste, smart green, WiFi scanner, metering 
(power consumption) 

Access Process The instances are available to all the pilot sites and use cases. 
Access to these instances may be requested from TIM; any devices and device types 
to connect to the oneM2M platform must be registered and provisioned in advance 
by TIM. 
Once the devices are registered, you will receive credentials for each 
device/application. 

Restrictions Please note that personal information, images, videos, documents must not be sent 
to the oneM2M platform 

 

3.4.3 Interfacing with the TIM oneM2M Platform 

The oneM2M platform is accessible through HTTP(S) APIs, using GET and POST to read/write data. 
Table 6 provides the main HTTP methods needed to interact with the platform. 

Table 6. Interfacing with the TIM oneM2M Platform 

Posting Data to the TIM oneM2M Platform 
The body of the message contains the data that to post to the TIM oneM2M platform. 
Method: HTTP POST 
URL Pattern: https://icon-lab.tim.it/onem2m/<APPLICATION_ENTITY>/<CONTAINER> 

Getting Dara from the TIM oneM2M Platform 
The body of the response message contains the data retrieved from the TIM oneM2M platform. 
Method: HTTP GET: 
URL Pattern: https://icon-lab.tim.it/onem2m/<APPLICATION_ENTITY>/<CONTAINER> 

Subscribing to Notifications from the TIM oneM2M Platform 
It is possible to subscribe to notifications of data being received by a container. The mechanism involves 
creating a Subscription resource within the container in question, indicating the target endpoint where you 
will notification should be posted (HTTP POST). 



 
 

33 

Method: HTTP GET: 
URL Template: https://icon-lab.tim.it/onem2m/<APPLICATION_ENTITY>/<CONTAINER> 

HTTP is the most used protocol, but the platform also supports MQTT(S) [TS10] and CoAP [TS08] 
oneM2M bindings. 

3.5 SENSINOV oneM2M Platform 

The SENSINOV oneM2M platform is used as the interoperability bridge for linking the AUTOPILOT 
IoT platforms. Its main features are listed below. 

 Supported Nodes: IN-CSE, MN-CSE, ASN-CSE, and ADN 

 Reference Points: Mca and Mcc interfaces 

 Resource Types: CSEBase, RemoteCSE, ACP, ASAR, AE, Container, ContentInstance, 
Subscription, Group, Node, Request, PoA, Discovery, Notification, etc. 

 Request Primitives: Retrieve, Create, Update, Delete, Discovery, and Notify 

 Interworking Proxies:  Watson IoT Platform, FIWARE Context Broker OceanConnect IoT 
platform 

 Addressing Formats: Structured and unstructured 

 Addressing Modes: Absolute, SP-relative, and CSE-Relative 

 Protocol Bindings: HTTP, CoAP, MQTT, and Websocket. 

 Content Formats: XML and JSON 

 Communication Modes: blocking, non-blocking synchronous, and non-blocking 
asynchronous 

 Multi-Hop: Retargeting via PoA. 

 Storage: SQL and NoSQL (SQL H2 by default) 

 Security: SSL/TLS 

 User Interface: Web interface for browsing oneM2M Resources and command line OSGi 
console 

3.5.1 SENSINOV oneM2M Platform Deployment and Access 

The SENSINOV oneM2M status of deployment and access is summarised in Table 7. 

Table 7. SENSINOV oneM2M Platform – Deployment Status and Access 

Platform SENSINOV oneM2M Platform 

Hosting TNO Contabo 
SENSINOV Digital Ocean cloud  

Deployment Status Two instances are deployed and available to use for Brainport and Versailles pilot 
sites. 

Purpose/Pilot Site Interoperability between IoT devices and IoT backend applications 

Standard/Protocol oneM2M, HTTP, MQTT, CoAP and Websocket 

URL Brainport:  

 oneM2M dashboard: https://vmi137365.contaboserver.net 

 oneM2M API: https://vmi137365.contaboserver.net:844 

 Resource monitoring: http://vmi137365.contaboserver.net:19999 
Versailles 

 oneM2M dashboard: https://dev1.sensinov.com 

 oneM2M API: https://dev1.sensinov.com:8443 
Resource monitoring: http://dev1.sensinov.com:19999 

Connected Devices 
and Applications 

Vehicle, stations and pedestrian sensors 

Access Process The instances are available to all the pilot sites and use cases. 
 

https://vmi137365.contaboserver.net/
https://vmi137365.contaboserver.net:844/
http://vmi137365.contaboserver.net:19999/
https://dev1.sensinov.com/
https://dev1.sensinov.com:8443/
http://dev1.sensinov.com:19999/
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 Access to Versailles instance should be requested from SENSINOV; any 
devices and device types to connect to the oneM2M platform must be 
registered and provisioned in advance by SENSINOV. (Please contact Mahdi 
Ben Alaya benalaya@sensinov.com) 

 Access to Brainport instance should be requested from TNO; any devices 
and device types to connect to the oneM2M platform must be registered 
and provisioned in advance by TNO. (Please contact Daan Ravesteijn 
daan.ravesteijn@tno.nl) 

 

 Once the devices are registered, you will receive credentials for each 
device/application. 

Restrictions Please note that personal information, images, videos, documents must not be sent 
to the oneM2M platform 

3.5.2 Interacting with the SENSINOV oneM2M Platform 

The oneM2M platform is accessible through HTTPS APIs to read, update, post and delete resources.   
Section 8.1 in the Annex describes main HTTP methods required to interact with the platform. 

3.6 Technolution MobiMaestro Platform 

MobiMaestro is a Technolution proprietary IoT platform, used by traffic management centres (TMC) 
in the Netherlands and Denmark. 

3.6.1 Overview of the MobiMaestro Architecture 

Figure 14 shows a high-level architecture of the MobiMaestro architecture. 

 
Figure 14. High-Level Architecture of the Technolution MobiMaestro Platform 

MobiMaestro is a platform for coordinated network-wide mobility management. It adjusts traffic 
strategy to meet policy goals, integrates traffic tools and works in an open architecture in order to 
get everything connected. The platform can be constructed modularly as depicted in Figure 14. For 
the AUTOPILOT project, MobiMaestro has been adapted as a true IoT-compliant platform 
considering the target architecture illustrated in Figure 3. To achieve federated architecture Service 
Bus component of the current MobiMaestro platform has been reused as a proprietary IoT platform 
and connected to the oneM2M interoperability platform using oneM2M interworking gateway. 

The MobiMaestro IoT platform contributed TMC information to the Brainport pilot. It provided, 
through the oneM2M interoperability platform, lane-information (shoulder access in the platooning 
use case), traffic light information (urban driving and platooning use cases), and parking information 

mailto:benalaya@sensinov.com
mailto:daan.ravesteijn@tno.nl
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(valet parking use case). 

3.6.2 MobiMaestro Platform Deployment and Access 

Technolution provides an instance of its IoT MobiMaestro in the (KPN) data centre, a commercial 
platform for hosting, managed by Technolution. The platform is exposed on public Internet. The 
MobiMaestro status of deployment and access are summarised in Table 8.  

Table 8. MobiMaestro – Deployment Status and Access 

Platform Technolution MobilMaestro Platform 

Hosting KPN Data Centre managed by Technolution 

Deployment Status One instance is deployed for use 

Purpose/Pilot Site Exchange TMC data with the Brainport pilot site use cases: 
o Floating Car Data 
o General data on road status  
o Hazardous events 
o Actual speeds 
o Traffic Light information 
o Parking information 

 

Standard/Protocol Datex II / ETSI / SPDP via a MQTT broker and SDK 

URL by request 

Connected Devices 
and Applications 

Datasources for roadstatus and FCD. 

Access Process The relevant developments for car platooning and car rebalancing/relocation 
instances are available to the Brainport pilot site. Main users for the instances are 
TNO and TU Eindhoven. Access to these companies is taken care of. Other access 
may be requested from Technolution. All access is user ID and password protected. 

Restrictions Please note that personal information, images, or videos, must not be sent to the 
MobiMaestro instance. 

3.7 OpenMTC 

OpenMTC is a reference implementation of the oneM2M standard, for conducting applied research 
and developing innovative M2M and IoT applications. Most of the oneM2M Rel. 2 core features are 
implemented in OpenMTC.  OpenMTC provides protocol bindings for HTTP and MQTT.  

OpenMTC is used in the Finnish pilot by VTT. Figure 15 shows the architecture of the implementation 
of the platform at the Finnish pilot site. In the Finnish site, devices exchange information through the 
MQTT broker to ensure low latency, and the information is also published in the IoT platform. 
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Figure 15. Implementation of oneM2M in the Finnish pilot 

3.7.1 openMTC Platform Deployment and Access 

The openMTC status of deployment and access in the Finnish pilot site is summarised in Table 9. 

Table 9. OpenMTC platform implementation – Deployment Status and Access 

Platform OpenMTC oneM2M Platform 

Hosting VTT Automated Vehicles laboratory  

Deployment Status One instance is deployed at the Tampere pilot site. 

Purpose/Pilot Site Main IoT platform in the Tempere pilot site 

Standard/Protocol HTTP/MQTT, oneM2M standard  

URL By request 

Connected Devices 
and Applications 

Vehicle, Road side unit  

Access Process Access is on demand. Access details can be requested from VTT, Tero Peippola, 
tero.peippola@vtt.fi 

Restrictions Please note that personal information, images, or videos, must not be sent to the 
OpenMTC instance. 

3.8 MESIM IoT Platform 

MESIM IoT Platform supports service-based operations, hierarchical real-time monitoring, easy 
creation of services through the service development tool. It supports such IoT standards for 
messaging as CoAP and MQTT. The platform also provides support for SOAP and HTTP based 
protocols. Figure 16 depicts architecture of the platform. 

Core features and functions provided by the platform: 

 Service based operations including SOA support, service repository for devices, and service 
routing and orchestration. 

 GUI based IDE for fast service developing leveraged by packaged templates and 
components. 

 Semantic based information management and query processing for IoT resources 

 Broad support for IoT messaging infrastructure based on IETF CoAP, MQTT, TCP/IP SOAP-
over-UDP, Binary XML non-IP and others. 

mailto:tero.peippola@vtt.fi
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 Sophisticated tools for monitoring resources, services, and devices. 
 

 
Figure 16. MESIM IoT platform architecture 

3.8.1 MESIM IoT Platform Deployment and Access 

The MESIM IoT platform status of deployment and access in the Korean pilot size is summarised in 
Table 10. 

Table 10. MESIM IoT platform implementation – Deployment Status and Access 

Platform MESIM IoT Platform 

Hosting At the Korean pilot site premises 

Deployment Status One instance is deployed at the Korean pilot site. 

Purpose/Pilot Site Main IoT platform in the Korean pilot site 

Standard/Protocol HTTP/MQTT, HTTP/SOAP  

URL By request 

Connected Devices 
and Applications 

Vehicle, Road side unit, Road radar 

Access Process Access is on demand. Access details can be requested from ETRI, Hyunseo Oh, 
hsoh5@etri.re.kr 

Restrictions Please note contact the owner of the platform for the set of restrictions. 

 

3.9 Conclusion 

Use case developers in all the pilot site used an IoT platform of their choice out of the listed 
platforms. Some partners exchanged data through the oneM2M IoT platform when it is required by 
their use case. So, here we may say that interoperability and federated IoT platform are key features 
allowing implementation of use cases with various partners and vendors involved. The Watson IoT 
Platform and FIWARE, Sensinov and Watson IoT Platform interworking gateways have been tested. 
All the required interworking gateways are deployed and tested with data. Note that the TIM 
oneM2M platform is already oneM2M-compliant. The interworking gateways facilitate 
interoperability between the platforms, which help make the use cases uniform across all the pilot 
sites. 

All deployed IoT platforms are available and accessible for the partners who are responsible for 
developing the use cases. Moreover, the IoT platform providers provide necessary technical support 
for the easy usage of the IoT platforms and maintain the server components. 

mailto:hsoh5@etri.re.kr
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4 Pilot Site IoT Ecosystems 

This chapter provides an overview of the implementation of the pilot site IoT ecosystems for the 
pertaining use cases. This includes the deployed and planned IoT platforms and devices. 

4.1 Finland (Tampere) 

4.1.1 Overall IoT Architecture of the Finnish Pilot Site 

The Finnish pilot site ecosystem involves AD vehicles with a oneM2M IoT platform (openMTC), a 
mobile road-side unit on which a traffic camera is installed, and connections to a traffic light server, 
a user interface for the parking maneuver and a system for parking reservations. An MQTT broker 
allows real-time exchange of messages between the different components. A parking management 
application has been developed, for managing and monitoring the parking maneuver.  

 

Figure 17. Finnish Pilot Site Overall Architecture 

Two use cases have been implemented in the Finnish pilot site: urban driving and valet parking. 
Figure 17 shows the architecture of the Finnish pilot site and the required components for both use 
cases under development. The pilot site devices include: IoT connected cameras and connected 
traffic lights. Parking spots are booked through a parking reservation application, developed by 
Mattersoft in the Transforming Transport project, using a HTTP/REST protocol. 

The traffic camera, vehicles, and the parking management application are connected through an 
MQTT broker to the open IoT platform. 

4.1.2 IoT Ecosystem Implementation in the Finnish Pilot Site 

Details of the implemented IoT ecosystem components for each of the Finnish pilot site use cases 
are provided in the following subsections. 
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4.1.2.1 Automated Valet Parking Use Case Implementation 

The goal of this use case is to provide to the user a service that, through IoT technologies and 
autonomous car driving functionalities, can automate and improve the way of reserving parking 
spots and enable the car to automatically park itself once left in a designated drop-off area. The AVP 
use case in Tampere is achieved through the following components and functionality. 

Object Detection with Cameras 

As shown in Figure 11, a camera, installed at the mobile road side unit, is used to detect pedestrians 
or obstacles on the parking site, as well as the occupancy of the parking places. The AI tool YOLOv3 is 
used for detecting obstacles on the path and on the parking places. Processing is performed locally, 
and the status of the parking place (parking place occupancy and objects on the path) is published 
on the IoT platform. Both the in-vehicle platform and the parking management system receive this 
information. The parking management system uses this information to reserve a free parking spot 
and to calculate the available route for the vehicle. The in-vehicle IoT platform uses this information 
to verify that the track is obstacle-free.  

Parking Management System 
The Parking management system both reserves parking spot and optimises routes to the parking 
spots.  When the vehicle is driving in unmanned mode, the operator in the parking management 
system acts as a driver, and can force the vehicle to start moving or to come to a stop. 

Connected Car with in-Vehicle IoT Platform 
A connected car also acts as an IoT device publishing information to the IoT platform. The vehicle 
receives information from the parking management system related to the parking manoeuvre, and 
from the camera on objects on the path. The in-vehicle platform is further defined in the AUTOPILOT 
deliverable D2.1 [D2.1]. 

4.1.2.2 Urban Driving Use Case Implementation 

The goal of this use case is to show how IoT can impact the safety of VRUs and the performance of 
autonomous driving at signalised intersections. 

Pedestrian Detection with Camera (VRU) 

The traffic camera, which is installed at the mobile road-side unit, is used to detect VRUs 
(pedestrians or cyclists) that have a green traffic light at the same time as the turning vehicle. The 
detection information is processed locally and published to the IoT platform and to the RSU.  

The in-vehicle IoT platform in the vehicle receives the information, and the vehicle stops before the 
pedestrian crossing until the crossing is free. 

Traffic Lights 

Traffic light status information and time to the next signal phase are received either through V2X or 
from the server of the traffic light operator (Dynniq). The information is transmitted to the vehicle.  

Connected Car with in-Vehicle IoT Platform 

The vehicle, as in the AVP use case, acts as an IoT device publishing information to the IoT platform. 
The vehicle will receive information from the traffic camera and the traffic signals. 

4.2 France (Versailles) 

4.2.1 Overall IoT Architecture of the French Pilot Site 

In Versailles, the French pilot site, three use cases have been implemented through urban driving 
and mobility focus: car sharing, urban driving and platooning. The IoT architecture for these three 
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use cases is provided in Figure 18. 

 
Figure 18. French Pilot Site Overall Architecture 

4.2.2 IoT Ecosystem Implementation in the French Pilot Site 

The implementation of the IoT ecosystem in the French Pilot Site is summarised in the following 
sections. 

All the data mentioned in the following sections are stored and shared between services on the 
SENSINOV oneM2M platform. This platform is provided by Sensinov and accessible to all the 
partners involved in the pilot site. 

4.2.2.1 Car sharing 

The car sharing booking service is available through a dedicated mobile application. To ensure real 
time data, the use case requires multiple IoT devices on the infrastructure. Each parking slot used in 
the experiments is equipped with sensors able to detect whether the slot is vacant or occupied. 
Parking sensors are assigned to a specific slot and have capacity to determine which car of the fleet 
is parked, allowing the FMS (Fleet Management System) to manage location of the whole fleet. 
Moreover, the charging spots provide information about their status, indicating whether an electric 
vehicle’s battery is charging or not. 

4.2.2.2 Urban driving 

The cars used in the experiments are Renault Twizy and have been equipped with multiple sensors 
and communication systems. These devices are used by the cars to detect objects in its environment 
and communicate with other users, other cars or road equipment. 

Some sightseeing information about interesting places in the city of Versailles are sent to the driver. 
To do so, Bluetooth low energy (BLE) beacons are installed on selected POI (Points of Interest). 
These beacons communicate with the embedded screen of the car to provide audio or video content 
to the driver. 
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4.2.2.3 Autonomous driving 

During a journey, the driver has a possibility to drive through the gardens of Versailles castle, where, 
though embedded HMI, they can switch to an autonomous driving mode during a short trip. Once 
the AD function is activated, the vehicle follows the predefined path. 

Vulnerable road users, such as pedestrians and cyclists, carry specific sensors to determine their 
positions and state. This information is sent directly to the car in order to increase the accuracy of 
the perception of its environment. 

4.2.2.4 Platooning 

The aim of this function is to allow continuous usage of the service by moving cars towards a place 
where a car sharing request is initiated. To rebalance several cars available at the different parking 
sites of the experiments, platooning is used allowing a single operator to move multiple cars. The 
FMS pushes information to the service operator when a platoon is needed through a dedicated 
mobile application. This use case requires different sensors and communication systems in the cars. 
It also requires communication with road side units to handle road crossings with the platoon. The 
traffic lights on the route of a platoon are equipped with such units accordingly. 

4.3 Italy (Florence-Livorno) 

The Italian pilot site is a testing infrastructure encompassing the Florence-Livorno freeway together 
with road access to the Livorno sea port settlement. The testbed consists of three zones: the 
Livorno-Florence freeway, the Traffic Control Centre (TCC) located in Empoli, and the port landside 
just in front of the cruise terminal. The vehicles that were used in the test site are FCA Jeep 
Renegade with different functions and roles: 

 Two vehicles by CRF with automated driving functions, were used to demonstrate the 
performance of the IoT-ITS ecosystems when the automated driving scenarios beyond SAE 3 
levels are running; 

 Five service vans by CRF and AVR with advanced V2X communication capabilities, were used 
for tuning and pre-testing the vehicular systems and services in the IoT enhanced ITS 
environment. 

 Two use cases are implemented in Livorno: 

 Highway Pilot: A cloud service merges the sensor measurements from different IoT devices, 
such as vehicles and roadside cameras, to locate and characterise road hazards. 

 Urban Driving: Focuses on the interaction with traffic lights and legacy traffic, on the 
robustness of the AD functions of the vehicle, safety when dealing with vulnerable road 
users, and positioning. 

In all the use cases the relevant data is sent to the OneM2M platform following the Common IoT 
Data Model (presented in Section 6). Moreover, the OBUs log all the relevant messages following the 
InterCor data model as defined in D2.1 - Vehicle IoT Integration Report. 

4.3.1 Overall IoT Architecture of the Italian Pilot Site 

Figure 19 shows the IoT architecture of the Livorno pilot site for both highway driving and urban 

driving use cases. Details of the architectural elements for both use cases are provided in the 

subsequent subsections. 
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Figure 19. Livorno Pilot Site Overall Architecture 

4.3.2 IoT Ecosystem Implementation in the Italian Pilot Site 

Details of the implemented IoT ecosystem components for each of the Italian pilot site use cases are 
provided in the following subsections. 

4.3.2.1 Highway Pilot Use Case Implementation (Livorno-Florence) 

The scope of these tests involves cars with IoT-enhanced AD functions, driving in a "smart" highway. 
The cars are Jeep Renegades with on-board equipment, the so-called IoT open vehicular platform, 
enabling IoT-triggered AD functions: speed adaptation, lane change, lane keeping. Some cars have 
special sensors also, such as the IoT based pothole detector. 

The "smart" highway is a freeway where a pervasive IoT ICT system is deployed based on a network 
of roadside sensors or other sources, capable of collecting information and making it available to 
cloud-based applications. Connected cars and the traffic control centre have an important role. For 
safety reasons, connected cars drive in a convoy, following the AD car. 

The goal is to show how the combined use of IoT and C-ITS can mitigate the risk of accident for an 
AD car when hazards occur on the road. Here, we deal with two types of hazards: (1) puddles and (2) 
road works. 

Puddles 

 Puddle IoT sensors: IoT sensors placed along the highway continuously monitor the presence 
of puddles. When a hazard is detected, the sensors send an alert to the road-side unit (RSU) 
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with detailed information, using IoT standard protocols. The RSU broadcasts the 
Decentralized Environmental Notification Message (DENM) [DENM14] to vehicles and to the 
traffic control centre (TCC). The TCC validates the alert and forwards the DENM message to 
farther away RSUs. At the same time, the TCC feeds the TIM OneM2M compliant platform 
with alert-related data. Two kinds of sensors are deployed, using different communication 
technologies: the 6loWPAN puddle sensors send messages to the Road Side ITS-Station using 
CoAP3, the NB-IoT puddle sensor sends the message straight to the oneM2M platform using 
the Long-Time Evolution (LTE) cellular network and REST protocols. 

 Road-Side ITS Station: Road-Side ITS Station is a programmable gateway with multi access 
technologies (notably 6LowPAN, ETSI ITS G5, LTE, Eth, etc.). It is a road side unit, compliant 
with ISO/TC204 WG16 standards [ISOTC204], able to exchange information over different 
networks, using different protocols, including the IoT ones. The RSU always listens the 
6loWPAN sensors and sends the measurement to the OneM2M IoT platform of the PS with a 
certain frequency. When the hazard occurs the RSU broadcasts a DENM with the lowest 
quality level of the information (i.e., not yet validated by the TCC) to the approaching 
vehicles via the IEEE 802.11OCB network, and the oneM2M platform via LTE cellular 
network. Furthermore, the RSU publishes on the oneM2M platform the cooperative 
awareness messages (CAM) collected from the vehicles in the Dedicated Short-Range 
Communications (DSRC) communication range [CAM14]. 

 Traffic Control Centre: The TCC implements a DATEX II4 node that can supply information 
from the whole highway network. The TCC is also responsible for managing ITS on the 
oneM2M platform of the Italian PS. Two kinds of services are provided leveraging the 
subscription to the oneM2M platform: hazard validation and DENM forwarding. It also 
publishes to the oneM2M platform the relevant traffic information from the DATEX II node, 
to be consumed by the highway infotainment service (Fi-PI-LI App). When a hazard (flooding 
on the road) occurs, the TCC is notified through its subscription to the oneM2M platform, 
and then, after assessing the severity of the danger, it validates the hazard and broadcasts a 
DENM with the highest quality level of the information (i.e., validated by the TCC) to the 
RSUs along the Highway, using the cabled LAN. The TCC subscribes the CAMs of the vehicles 
published by the RSUs on the oneM2M platform. The information is combined with the 
Bluetooth and Wi-Fi transit data loggers to perform the travel time analysis and live 
overview on the TCC video wall. The TCC subscribes the AD car’s sensor data on the 
oneM2M platform to provide ITS services to the users of the highway. 

 Autonomous Driving Car: The AD car broadcasts CAMs over the IEEE 802.11OCB network; at 
the same time the AD car publishes data from its sensors to the oneM2M platform. The AD 
car is approaching the hazard on the road: the in-vehicle application (Connected eHorizon) 
subscribes the alert from the oneM2M platform. The in-vehicle IoT platform combines the 
information obtained by the Connected eHorizon (CeH) with that obtained by DENM via the 
IEEE 802.11.OCB network. It, then, feeds the appropriate autonomous functions, which 
performs the necessary adaptation of the driving style in a "smooth" way if the message is 
received well in advance of reaching the hazard. However, if the vehicle is close to the 
hazard and for some reason (e.g., the warning from the IoT service wasn’t received, or the 
warning was received just by the safety channels of DSRC), then an emergency braking is 

                                                           
 
 
 
3
 Constrained Application Protocol (CoAP): http://coap.technology 

4
 DATEX II: http://www.datex2.eu 

http://coap.technology/
http://www.datex2.eu/


 
 

44 

needed, this event is registered by the in-vehicle application and sent to the OneM2M IoT 
platform of the pilot site. At the same time, the FCA cloud monitors the performance of the 
vehicle, checks that the in-vehicle application feeds the appropriate autonomous functions, 
send notification/warning to the in-vehicle HMI. 

 Connected Cars: Connected cars lead and follow the AD car; they continuously broadcast 
CAMs over the IEEE 802.11OCB network, at the same time, they publish its sensor’s data the 
oneM2M platform. The connected cars are approaching the hazard on the road, so the in-
vehicle IoT platform receives the information from both the RSU along the track and the 
OneM2M IoT Platform. The in-vehicle application pre-alert the driver about the hazard using 
the information obtained by the OneM2M IoT Platform of the PS and by the DENM. The AD 
car on-board unit (OBU) can instantiate either smooth IoT-enabled speed adaptation and 
lane change, or eventually suggest an alternative route (if any) to the driver through HMI. 

 
Roadworks 

 A (WSN) sensor node is attached to the road works trailer and announces the presence of 
roadway works to an RSU. The RSU, in turn, triggers DENM messages, broadcasting 
information about available lanes, speed limits, geometry, alternative routes, etc. This RSU is 
located close to the roadway works and it can be a temporary ITS station as well, because if 
the road works are far away from the permanent RSUs put on gantry, they cannot be 
reached by the signal transmitted by the trailer. The temporary RSU will use the LTE network 
to communicate with the TCC, as Ethernet wiring is not available on site. 

 The TCC broadcasts the DENM messages to farther away RSUs. At the same time, the TCC 
feeds the ETSI OneM2M platform with road works related data. This information is 
consumed by the Connected eHorizon application from CONTINENTAL and transmitted to 
the FCA cloud as a modified dynamic speed limit based on the generated dynamic event. The 
FCA cloud immediately notifies the enabled vehicles about the updated information for CeH 
devices installed on prototypes. The in-vehicle application, then, feeds the appropriate 
autonomous functions, which perform the necessary adaptation of the driving style, taking 
into consideration information obtained from DENM messages. A notification/warning 
through the in-vehicle HMI can then be generated. 

4.3.2.2 Urban Driving Use Case Implementation (Livorno-Florence) 

This use case demonstrates how IoT may impact the safety of VRUs in an urban-like scenario 
(instantiated at a harbour settlement) with AD cars, pedestrians at a traffic light crossing, connected 
bicycles, and a sea port monitoring centre. 

Pedestrian Detection with Cameras 

Figure 20 shows a smart traffic light detecting a pedestrian or an obstacle on the lane.  
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Figure 20. Picture of the smart traffic light with RSU and camera for pedestrian detection 

The information is processed locally and submitted to the RSU using IoT protocols and to vehicles via 
standard C-ITS messages. Moreover, a connected traffic light sends information about the time-to-
green/red (SPAT/MAP messages [AG15]). The RSU receives the information, fuses the data and 
sends it by DENM to all the interested actors on the roads. 

The OBU of the AD car receives the information and smoothly adapts the speed to the situation, e.g., 
if a pedestrian is crossing the road when the traffic light is green for the cars, the AD car will behave 
as if the traffic light is red. Moreover, the detection of VRUs and the traffic light status is displayed 
on the HMI in the car. The information from RSUs (SPAT, detected pedestrian) and OBUs (DENM) is 
also sent to the IoT data platform via IoT standard protocols and it can then be processed by the Port 
Monitoring Centre for real time risk assessment and safety services. 

Connected Bicycle 

An OBU installed on an ITS G5 bicycle sends standard CAM notifying its presence on the road. The in-
vehicle IoT platform of the AD car receives the information and smoothly adapts the speed to the 
situation. The driver is informed about the proximity of vulnerable users with a notification on the 
HMI while the AD car algorithms decide what actions to take. Information from the OBUs is also sent 
to the oneM2M IoT platform over CoAP and/or HTTP. 

Potholes Detection 

The goal of this use case is to demonstrate how additional IoT sensors placed in the AUTOPILOT 
prototype can enhance the functions of the car itself. In such a way, the vehicle can be used as an 
IoT sensor for detecting the surface conditions for both highway and urban scenarios. The Italian 
Pilot Site has decided to implement the study of a “Virtual Sensor” for pothole detection, using the 
same approach with three different sensors. 

The data of the raw signal accelerations on the 3 axes is collected and analysed using a Nokia 6 
smartphone, an inertial 6LoWPAN sensor and the accelerometer sensor of an inertial measurement 
unit (IMU).  

These different wireless vibration sensors are deployed on the connected vehicle, which transmits to 
the OBU via 6LowPAN/MQTT protocols the occurrences of vibrational shock above a certain level. 
When a pothole is encountered by the car, the vibration exceeds the threshold, and the IoT vibration 
sensor sends an alert to the OBU. The latter combines this information with data from the CAN bus 
(speed, odometer, etc.) and GPS and sends this data to the IoT platform, where they can be fed into 
the AD car applications. 

Additionally, the OBU reports to the OneM2M platform also an idea about the status of the road 
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surface depending on the data coming from the sensors.  

4.3.3 IoT Platform and IoT Devices Integration 

 
Figure 21. Integration of IoT Devices into the oneM2M IoT Platform in the Italian Pilot Site 

In the Italian pilot site, IoT devices are connected to the IoT oneM2M platform through the oneM2M 
standard, as shown in Figure 21. 

Devices (e.g., OEM in vehicle components, inertial sensors, smartphone) in the Italian PS 
communicate with the oneM2M platform through gateways (On-Board Units) that integrate the IoT 
information from various sensors. 

The in-vehicle IoT platform provided by LINKS Foundation, offers communication interfaces to 
components from the following partners: TIM (OneM2M Cloud platform), CNIT (accelerometer 
sensor for the pothole algorithm), CRF and AVR (intra-vehicle sensors). 

The OBU can also exchange data with additional IoT devices such as inertial sensors and smartphone 

motion sensors: these data are interfaced with the in-vehicle IoT platform using CoAP/6LoWPAN or 

MQTT. 

4.4 Netherlands (Brainport) 

The Dutch pilot site (Brainport) has two locations: 

 Helmond site, covering both highway (A270) and parking area (of the Automotive Campus), 

 Technical University Eindhoven (TU/e) campus. 
In addition, specific locations are targeted in the neighbourhood where the road surface has some 
detectable deficiencies. 

All use cases have been implemented In Brainport: 

 Automated Valet Parking  

 Car/Ride Sharing 

 Highway Pilot  

MQTT 
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 Platooning 

 Urban driving 

The following vehicles have been used in Brainport to support the above use cases: 

 TNO/Tass: 3 Toyota Prius, 

 TU/e: 1 Toyota Prius and 3 VFLEX, 

 VALEO: 1 VW Tiguan, 

 TT: 1 mobile mapping van, 

 NEVS: 3 electric vehicles (D-class) (planned). 

In cooperation with the Innovatieve Verkeerscentrale and TASS (third-party partners), a simplified 
Traffic Management functionality has been emulated to accommodate the exchange of information 
about the A270 conditions.  This includes information about lane accessibility and maximum allowed 
speed per lane. 

4.4.1 Overall IoT Architecture of the Brainport Pilot Site 

Unlike the remaining pilot sites, which have centralised IoT platforms, the Brainport IoT platform is 
federated and follows the same architecture as the project's IoT platform illustrated in Figure 3. 

Five IoT platforms have been deployed in Brainport, and inter-connected exactly in the same way as 
in in Figure 3: 

 FIWARE IoT platform, provided by NEC, 

 OceanConnect IoT platform, provided by HUAWEI, 

 Watson IoT Platform, provided by IBM, 

 oneM2M interoperability platform provided by SENSINOV and instrumented and deployed 
by TNO.  

 MobiMaestro platform provided by Technolution. 
 

4.4.2 IoT Ecosystem Implementation in Brainport 

Figure 22 shows the Brainport IoT ecosystem and the device connectivity. 

 
Figure 22. Integration of IoT Devices into the oneM2M IoT Platform in the Dutch Pilot Site 
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On highway A270 (Helmond – Eindhoven), 5 kilometres of road are covered by ITS-G5 RSUs and TASS 
cameras. Every 500 meters, there is one RSU and camera. RSU and cameras are connected by a fibre 
backbone, reaching the TASS offices. All data from ITS-G5 RSUs and cameras are collected and 
processed by the TASS back-office servers. The processed camera data is pushed to the oneM2M 
platform with a minimum update rate to make it available to other vehicles and applications using 
the A270 trajectory. At the Automotive Campus, several cameras are installed for Valet Parking. 

All use cases in the Brainport area made use of available commercial LTE services (A270, Automotive 
Campus, TU/e campus site). The TU/e Campus also offers Wifi services. In addition, TNO has 
deployed an eNB as part of a pre-5G mobile network for R&D purposes, operating in a licence-free 
band. This eNB, which offers a coverage area of a few kilometers, supports also NB-IoT, but not yet 
LTE-V2X (availability is very uncertain at this point). Having our own small scale mobile network 
allows us to conduct experiments with a Mobile Edge Computing (MEC) node at the road side 
running a oneM2M middle node platform instantiation which allows the use of more time critical 
data gathering and distribution.  A specific edge application which makes use of the available IoT 
functionality is a Local Dynamic Map / Shared World Model application which makes IoT sourced 
information available to participating vehicles which are entering the LDM service area. The 
application runs on the MEC node and is fed by the central oneM2M platform and can be considered 
as a bulletin board to which participating vehicles can subscribe.  

Vehicles has been equipped with a combination of communication technologies: some has Ultra-
Wide Band (UWB), while all have ITS-G5 and LTE interfaces. For validation purposes, several VRU’s 
has been equipped with ITS-G5. 
The various communication technologies have been used for different purposes as follows: 

 ITS-G5: For time-critical communication, only ITS-G5 can support the required latencies. 
Therefore, ITS-G5 is the protocol used for time-critical communication. Data is 
communicated using ETSI-G5. 

 LTE: Vehicles are equipped with LTE modems to connect to commercial LTE services which 
are widely available. For the sake of the BP pilots one commercial provider has been 
selected (purchase of SIM cards). TNO’s Hi-5 pre 5G platform provides a specific LTE service 
which can be subscribed to with a regular LTE interface on the vehicle(s). Depending on the 
type of data (near-time-critical or non-real-time), data is processed on the MEC node or in 
the cloud.  

 Fixed Connection: LTE eNB is connected via fixed (fibre) connection to the pre-5G core 
network, and then to the one2M platform, which is deployed at the premises of TNO The 
Hague. 

4.4.2.1 Automated Valet Parking 

In this use case a user drops an AD vehicle at a car park (Automotive Campus terrain) and the vehicle 
is then able to park itself at a free parking spot. To leave the car park, the user can call the car, which 
drives itself to the pick-up location. Detection of free parking spots is applied through cameras 
installed on the premises and equipped with software. This information is used when a vehicle path 
is being planned. 

4.4.2.2 Car/Ride Sharing 

The objective was to enable customers to share a fleet of cars (either self-driving or not) to reach 
their destinations. A car/ride sharing service finds the closest available car and assigns it or 
dispatches it to the customer. Car/Ride sharing in Brainport is intended as a pure ride sharing, where 
multiple customers that possibly have different origins and destinations share a part of the ride on a 
common car. The Car/Ride Sharing use case has been used as a starting used which is linked to other 
use cases like Platooning and AVP. This was demonstrated at ITS congress in June 2019. 
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4.4.2.3 Highway Pilot 

Information about the state of the road surface (potholes, cracks, patches of ice, etc.) is collected 
and sent (published) to a central server and is also used to update electronic map data. This data is 
then made available to other vehicles and applications, for example to adjust their speeds. The use 
case involves at least two vehicles: a registration vehicle and at least one user vehicle. 

4.4.2.4 Platooning 

The goal was to show added value of IoT data to platoon formation and subsequent platooning. This 
goes beyond the direct information exchange between the platooning vehicles, but also involves a 
so-called platooning service, which runs in the cloud and makes use of available IoT originated data 
to guide the platooning vehicles on the tactical level, e.g. on speed and lane advice. The platooning 
use case makes use of the oneM2M IoT platform and MobiMaestro platform for route and 
interception calculation. Platooning services depicted on Figure 23. 

 

Figure 23. Platooning architecture 

Technolution has built a route planner as a new module of the MobiMaestro Network Manager that 
calculates routes for platooning cars, which create significant overlap on a highway. Using traffic 
information, computed route represents the shortest path based on the actual traffic conditions and 
includes average speeds from origin to destination and initial interception point. 

Once the route is calculated and the vehicles are driving, the platooning service continuously gives 
speed advises based on calculated routes, average speeds and updated interception point. 

4.4.2.5 Urban Driving 

The objective was to demonstrate the added value of IoT information in the process of AD car 
rebalancing, i.e., automatically moving a fleet of shared AD cars from a place where they are least 
needed to a place where they are most needed. In this case, we used information about VRUs to 
schedule car rebalancing and reroute the cars to avoid VRUs. 

4.4.3 Driver license virtualization as end-user authentication to Car/ride sharing 

Brainport car/ride sharing use case serves as an example service provider for integration of Driver 
license virtualization service and an authentication service leveraging on virtualized documents. 
Authentication is based on strong user identification and subsequent issuance of semi-anonymous 
authentication tokens. The tokens are used for authentication to the car/ride sharing proxy and user 
information is used to access underlying IBM IoT automotive platform. 
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Integration has been done using following components: 

 Document virtualization service: Service that reads user document and issues anonymous 
PKI credentials with information from the document, in this case age of the document 
holder and eligibility to drive. 

 Document virtualization SDK: A library in the car/ride sharing application that is used during 
document virtualization and authentication. 

 Car/Ride sharing mobile App: An application that provides car/ride sharing functionality: to 
select start and end point of a ride integrated with the Document Virtualization SDK. 

 Car/Ride sharing proxy: A thin backend service that works as a bridge between IBM Watson 
IoT platform and mobile applications. The main scope was authentication and authorization 
of the users. The end-user's credentials (virtualized driver license) were translated into 
access token credentials consumed by the platform. 

 Authentication server based on OpenID Connect protocol: a standard application for 
remote verification of virtualized documents. 

4.5 South Korea (Daejeon) 

Only Urban Driving use case has been implemented at the Korean pilot. There are two locations at 
the pilot site: 

 ETRI site location is convenient and efficient to test Intersection Safety System as of existing 
V2X communication and ISI service concept developed by ETRI. 

 K-City has been built for the automated driving test and provides intersection test facilities 
including V2X communication network, traffic light and integrated traffic centre.  

4.5.1 Overall architecture of the Korean pilot site 

Figure 24 shows an overview of the Korean pilot site architecture. This includes: 

 An IoT platform that combines data comes from the traffic light and road infrastructure 
sensors such as a radar or a camera. 

 Processed IoT information is sent to OBU for warning generation and IoT Server for other 
ADs 

 Infrastructure for intersection safety information provisioning is set up. 
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Figure 24. Architecture overview of the Korean pilot site. 

4.5.2 IoT Ecosystem Implementation in the Korean pilot site 

Details of the implemented IoT ecosystem components for each of the Korean pilot site use cases 
are provided in the following subsections. 

4.5.2.1 Urban Driving 

Urban driving use case addresses provision of Intersection Safety Information Service that warns 
vehicles of pedestrians or vehicles presence in order to avoid accidents. A test road segment is 
equipped with a radar that detects pedestrians and transmit information to the vehicle’s OBU. 

Interaction with the devices is following: 

 A test driver stops at the intersection and is waiting for traffic lights signal to become green. 
Simultaneously the road radar scans for moving vehicles on the test road in real time. If 
vehicles are detected, the information regarding detected vehicles is sent to Intersection 
Safety System (ISS). 

 A traffic light is connected to ISS and traffic light phase information is sent to ISS on a regular 
basis. 

 ISS receives a notification from the road radar that there’s another vehicle at the 
intersection and traffic light phase information. ISS combines two received messages and 
sends an update to a service terminal via V2I radio communication. The service terminal 
decides whether the moving vehicle will cross the vehicle’s trajectory and potentially may 
cause vehicle collision. Finally, the service terminal generates a warning signal in case of 
danger. 

Another scenario tests for pedestrian presence at the augmented crosswalks: 

 Pedestrian detected by the road radar and their presence combined with the current traffic 
light state,  

 This combined information is transmitted to OBU, 

 OBU generates warning timely and displays it on the driver’s device. 
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4.6 Spain (Vigo) 

The Spanish pilot site combines the efforts from PSA, CTAG, and Vigo City Council to provide a test 
environment in the city of Vigo. This test environment supports the use cases of urban driving (UD) 
and automated valet parking (AVP), which are developed. Both use cases are implemented and 
tested in different parts of the city. The UD use case is tested in a central street in Vigo, while the 
AVP is tested in the public indoors parking of the city council. 

The Spanish pilot site includes three vehicles, two contributed by PSA, and one contributed by CTAG 
(PSA branded). 

4.6.1 Overall IoT Architecture of the Spanish Pilot Site 

The Spanish pilot site ecosystem involves the mentioned vehicles with a oneM2M IoT platform, 
several IoT devices connected to the IBM Watson IoT platform, a few RSUs working as gateways for 
the devices, and some IoT applications connected to the IBM Watson IoT Platform. 

 
Figure 25. Spanish Pilot Site Overall Architecture 

Figure 25 shows the architecture of the Spanish pilot site and the required components for both 
urban driving and valet parking use cases. The pilot site devices include: IoT connected cameras, 
connected traffic lights, and a hazard event server that will provide all available information about 
road conditions as road warnings, traffic jams or accidents. 

All these devices are connected to the IBM Watson IoT platform, providing continuous updates of 
their statuses and making these available to the different applications that might make use of them. 
Some of these applications (urban driving system, parking management, and parking service) are 
connected to the IBM Watson IoT platform, while others are connected through the oneM2M 
connector. 

The indoor parking that is used for the AVP use case also provides information to the IoT platform, 
indicating the available parking spots in real time and instructing the routes for the cars to reach 
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their assigned parking spaces. 

4.6.2 IoT Ecosystem Implementation in the Spanish Pilot Site 

Details of the implemented IoT ecosystem components for each of the Spanish pilot site use cases 
are provided in the following subsections. 

4.6.2.1 Automated Valet Parking Use Case Implementation 

The goal of this use case is to provide to the user a service that, through IoT technologies and 
autonomous car driving functionalities, can automate and improve the way of finding available 
parking spots and enable the car to automatically park itself once left in a designated drop-off area. 
This is achieved through the following components and functionality. 

Pedestrian Detection with Cameras (VRU) 

As shown in Figure 25, a camera is used to detect pedestrians or obstacles on the parking site. The 
information is processed locally and published to the IoT platform and to the RSU. The in-vehicle IoT 
platform receives this information and smoothly adapts the speed to the situation or stops 
completely to avoid any collision. 

Parking Management System 

As mentioned before, the AVP use case also provides information about available parking spots and 
allow these to be booked in advance. This is performed by the parking management system, which 
publishes to the IBM IoT platform the status of the parking site, including available spots. Using the 
DATEX II schema as a reference, all this information can be provided and linked, from the different 
parking sites to the specific parking spots or groups of parking spots. These data can then be 
processed and managed by the parking management system, which enables the booking and 
management of the Spanish parking site. 

Android AVP Application 

For this AVP use case, the Spanish pilot site has an Android application that, using the IoT messaging 
protocols and the provided APIs of the implemented services, is the interface that the user uses to 
perform the possible actions for AVP. 

Connected Car with in-Vehicle IoT Platform 

A connected car also acts as an IoT device publishing information to the IoT platform. Moreover, the 
in-vehicle IoT platform has the required services to translate the IoT messages that command the 
pickup and drop-off actions of the AVP use case into the needed AD messages to start the 
manoeuvres. 

The in-vehicle platform is defined in the AUTOPILOT deliverable D2.1. 

4.6.2.2 Urban Driving Use Case Implementation 

The goal of this use case is to show how IoT can impact the safety of VRUs and the performance of 
autonomous driving in an urban-like scenario with AD cars, pedestrians at a traffic light crossing, 
hazards and connected traffic lights. 

Pedestrian Detection with Camera (VRU) 

As shown in Figure 25, cameras are used to detect pedestrian or obstacles on the lane. The 
detection information is processed locally and published to the IoT platform and to the RSU.  
The in-vehicle IoT platform or the OBU of the AD car receives the information and smoothly adapts 
the speed to the situation or stops completely to avoid any collision. 

Traffic Light Events 
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Connected traffic lights send information about the time-to-green/red to the IoT platform. From the 
IoT platform, the vehicle can receive this information and adjust its speed depending on the traffic 
light status, stopping when lights are red and moving when they are green. Moreover, the car can 
display the traffic light status in its HMI according to the received IoT messages from the traffic 
lights. 

Hazard Events 

A traffic control centre, connected to the IoT platform, provides information about different hazard 
events, such as road works, accidents, etc. The traffic control centre sends every registered event to 
the IoT platform, allowing the AD vehicles to access this information and act accordingly, by lowering 
their speeds. 

Connected Car with in-Vehicle IoT Platform 

Similarly, to the AVP use case, the car is always publishing its own status as an IoT device. 

 

5 Interoperability 

As already mentioned in Chapter 3, the AUTOPILOT IoT architecture was designed as a federation of 
IoT platforms, allowing it to be open and flexible. Developers may plug their own (proprietary) IoT 
platforms or devices in the architecture and exchange data with existing IoT platforms and devices. 
As each IoT platform provides a different set of services (features) and may expose a different 
interface and use a different data exchange protocol, an effort is needed to achieve interoperability 
while allowing for openness and flexibility. 

 

Figure 26. Autopilot Federated IoT Architecture (Copied from Chapter 3 for convenience). 

Interoperability in AUTOPILOT is achieved based on the following three principles: 

 oneM2M Interoperability Platform and Interworking Gateways: As shown in Figure 26 
(copied from Chapter 3), proprietary IoT platforms are interconnected through interworking 
gateways and the oneM2M interoperability platform. 

 Standardised IoT Data Models: IoT data requiring to be exchanged across the IoT platforms 
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are standardized: 
o IoT Data Models specify the syntax, i.e. how the IoT data has to be represented. 
o IoT Data Models also require agreement on the semantics of the data, i.e. what the 

data means – this may be defined in a written specification that developers have to 
adhere to – or in form of an explicit ontology that is available in electronic form. E.g. 
the FIWARE NGSI-LD Broker refers to concepts identified by unique URIs, which may 
be defined in an ontology. 

Each of the above interoperability principles is discussed in the following sections. 

5.1 oneM2M Interoperability Platform and Interworking Gateways 

An interworking gateway is considered as a oneM2M wrapper belonging to a proprietary IoT 
platform, which enables to expose a oneM2M interface and to be connected to the oneM2M 
interoperability platform. We refer to the gateway between Watson IoT and oneM2M platforms as 
"Watson-oneM2M Interworking Proxy and to the gateway between FIWARE and oneM2M as 
"Semantic Mediation Gateway (SMG)" or "Morphing Mediation Gateway (MMG)". MMG is a more 
dynamic and advanced version of SMG. 

The oneM2M platform serves as the bridge for interoperability, allowing data to flow from one IoT 
platform to another in both directions. Using this architecture, an IoT platform may push data to 
other IoT platforms and receive data from them. 

Mapping between the internal data representation of an IoT platform and the oneM2M message 
contents are specified in the interworking gateways. These gateways also act as filters allowing only 
selected data to be exchanged. 

In this architecture, data providers or consumers, such as applications, may use any of the available 
IoT platforms according to their requirements. For instance, a data provider may publish data to 
Watson IoT platform and this data can be shared with FIWARE through the oneM2M platform, so 
that an application developer who uses FIWARE can access it through the FIWARE platform. 

This approach offers flexibility to the pilot sites and application developers. However, to enable this 
oneM2M interoperability platform data flow, data providers and consumers need to exchange data 
using standard data models and vocabularies as explained in the following sections. 

5.2 Standardised Data Models 

oneM2M provides a standard protocol for exchanging IoT messages, but it does not specify the 
content of the messages as this is domain specific. To achieve interoperability in AUTOPILOT, we 
standardised the contents of the oneM2M messages exchanged between the IoT platforms, devices, 
applications, and vehicles, through the oneM2M interoperability platform. A Data Modelling Activity 
Group (DMAG) was created in AUTOPILOT for this purpose. 

The scope of the data model standardisation activity in AUTOPILOT covers the IoT messages and 
data fields required to implement the project's use cases uniformly across the pilot sites. On the one 
hand this includes the syntactic structure of the messages, e.g. if a certain field expects a number or 
a string. On the other hand, the semantics is specified, e.g. that the number expected by a certain 
field is a speed in kilometres per hour. All standardized data models are described in a written 
specification. Some may have an alternative representation, e.g. according to the NGSI-LD model for 
use with the FIWARE platform with a corresponding ontology representation. 

Standardised data models allow AD vehicles to access the same types of data regardless of their 
locations (pilot sites), and to be able to process the data and work with it. For instance, a message 
notifying AD vehicle about a hazard on the road, or instructing them to avoid a given road lane, 
should be the same in all pilot sites, allowing vehicles to consume these messages and react to them 
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correctly as they are moving from one place (e.g., pilot site) to another. 

Details of the data model standardisation work are provided in chapter 6. 

6 Common IoT Data Model 

This chapter provides an overview of the IoT data model standardisation work carried out by the 
AUTOPILOT Data Modelling Activity Group (DMAG).  

For the final version of the AUTOPILOT data models, please refer to the dedicate GitLab repository at 
https://gitlab.com/autopilot/iot-data-model and wiki at https://gitlab.com/autopilot/iot-data-
model/wikis/home.  

6.1 Scope of the Work 

It is important to note that it is not the intention of the DMAG to standardise all the data across all 
the use cases and pilot sites. Rather, the scope of the DMAG work covers only the IoT messages used 
for exchanging information or instructions between IoT devices, services, and the AD vehicles. This 
includes, for example, messages notifying AD vehicles about the presence of a hazard, or object, or 
instructions for AD vehicle to avoid a given road lane. Raw sensor data (example LiDAR, camera 
images, etc.) and service internal data models (e.g., parking data, user accounts, etc.) are beyond the 
scope of the data modelling activity. 

Work of the DMAG is based on reusing, and possibly extending, existing standards rather than 
creating new models. 

6.2 Use Case IoT Data Requirements 

Use case IoT data models initially were gathered by NEC from the project partners. This allowed the 
DMAG to examine the requirements pertaining to the IoT data model and to select the messages to 
standardise. The final list of IoT messages under standardisation by the DMAG is provided in Table 
11. 

Table 11. AUTOPILOT Use Case IoT Messages Selected for Standardisation. 

Message Type Pertaining Use Cases 

Vehicle Probe Data (GPS position, speed, status) Car/ride sharing, AVP 

Notifications about detected objects AVP, highway pilot, urban pilot, platooning, car/ride 
sharing 

Notifications about VRUs AVP, highway pilot, urban pilot, platooning, car/ride 
sharing 

Notifications about hazards and obstacles AVP, highway pilot, urban pilot, platooning, car/ride 
sharing 

Notifications about traffic conditions Highway pilot, urban pilot, platooning, car/ride sharing 

Notifications about environmental conditions Highway pilot, urban pilot, platooning, car/ride sharing 

Traffic light states and time to red/green Highway pilot, urban driving, platooning 

Notifications about parking space availabilities AVP, parking, car/ride sharing 

Notifications about charging spot availabilities AVP, parking, car/ride sharing 

Routing instructions Highway pilot, urban driving, AVP, car/ride sharing 

Platoon instructions Platooning 

As can be seen in Table 11, data sources (sensors) are not mentioned here. In fact, we were aiming 
to standardise the IoT messages regardless of the originating sensor or application. 

6.3 Common IoT Data Model 

https://gitlab.com/autopilot/iot-data-model
https://gitlab.com/autopilot/iot-data-model/wikis/home
https://gitlab.com/autopilot/iot-data-model/wikis/home
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Following the initial IoT data requirement identification phase, the DMAG has elaborated a project 
standard for the IoT messages. The final version of the data models and how they are used in 
AUTOPILOT are available from the GitLab repository at https://gitlab.com/autopilot/iot-data-model. 

 
Figure 27. Overview of the AUTOPILOT IoT Data Model Packages 

The AUTOPILOT common IoT data model is split into several packages, based on different standards 
(e.g., SENSORIS, DATEX II). Figure 27 shows an overview of the current packages being designed and 
their dependencies. Packages leaders are listed in Table 12. 

Table 12. IoT Data Model Package Lead Partners 

Package Lead Partner 

core and event NEC, Gurkan Solmaz <gurkan.solmaz@neclab.eu>  

vehicle IBM Ireland, Anton Dekusar <adekusar@ie.ibm.com> 

road side 
equipment  

CNIT, Mariano Falcitelli <mariano.falcitelli@cnit.it> 

parking CTAG, Silvia Alén <silvia.alen@ctag.com> 

traffic CNIT, Mariano Falcitelli <mariano.falcitelli@cnit.it> 

avp DLR, Louis Touko Tcheumadjeu <louis.toukotcheumadjeu@dlr.de> 

platoon TNO, Jacco van de Sluis <jacco.vandesluis@tno.nl> 

An overview of the packages that were developed is provided in the following subsections.  

6.3.1 Event package 

The Event package covers messages sent primarily to AD vehicles about various road and traffic 
situations pertaining to the AUTOPILOT use cases, such as accidents, road works, weather 
conditions, object detection, etc. 

https://gitlab.com/autopilot/iot-data-model
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Figure 28. Overview of the Event Classes 

 
Figure 29. Overview of the Event Enumerations 
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The event package classes and enumerations are illustrated in Figure 28 and Figure 29 respectively. 
As shown in Figure 28, different types of events exist: 

 The abstract class Situation represents events related to the road. These include: 
o AbnormalTraffic: traffic jams 
o Accident: defines an accident occurred on a specified road at certain timestamp. 
o Condition: abstract class representing environmental or infrastructure conditions: 

 RoadCondition: potholes, hazardous substance spills, etc. 
 WeatherCondition: fog, ice on road, etc. 

o ObjectDetection: detection of an object on, or close to, the road, such as animal, 
person, crowd, obstacle, etc. 

o RoadWorks: defines road works with start and end time 

6.3.1.1 Crowd Modelling 

Crowd behaviour is modelled as events of ObjectTypeEnum MOVING_GENERAL. While some key 
aspects like location, observation timestamp and object count are directly mapped as event 
attributes, the more detailed aspects of the NGSI modelling are modelled as custom attributes, 
enabling the translation between the Autopilot instance that can be stored in oneM2M and the NGSI 
modelling stored in a FIWARE Broker (IoT Broker or Scorpio). 

The semantics of the FIWARE crowd model is modelled according to an ontology whose structure is 
visualized in Figure 30.  

 
Figure 30. Crowd Mobility Ontology 

The core entities being modelled are the WifiMote, which does the measurments, and the 
CrowdEstimation, which provides the actual information about crowd. The latter has a subclass 
StayDuration, which in turn has subclasses DurationCount, which models the number of people 
detected which have stayed in the area for a minimum duration, and DurationAverage, which 
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provides the average time people stay in the detection area. The instances of each of these concepts 
have further attributes, e.g. an identifier, a unit (e.g. for the stay duration) or a name (e.g. for crowd 
estimation). 

6.3.2 Vehicle Package 

The vehicle package covers the messages sent from the AD vehicles to the IoT platform. This is 
relevant to the car/ride sharing, AVP, and platooning use cases, where vehicles receiving a service 
need to be tracked. Vehicle data are consumed by the relevant car/ride sharing, AVP or platooning 
service, but not shared with other services. 

The vehicle package is based on the SENSORIS data model [HERE15]. An overview of the elements of 
a SENSORIS message is provided in Figure 31. Greyed elements will not be supported in AUTOPILOT. 

 

Figure 31. Overview of the SENSORIS Message Elements 

In addition to vehicle GPS data and statuses, SENSORIS messages include events detected by vehicles 
along their paths, e.g., object detection, environment status, lane boundary detection, etc. 
SENSORIS event information is supported in AUTOPILOT, but is considered as raw data. This means 
that SENSORIS event messages submitted by vehicles are not consumed directly by other vehicles. 
Rather they are intercepted by event processing services that retrieve the event detection sections 
from the vehicle messages, analyse them (e.g., for quality check) and republish them as standardised 
event messages (as specified in the package event). 

6.3.3 Traffic Package 

The IoT devices, notably sensors and gateways, deployed along the roads support both the Traffic 
Control Centers to manage the traffic operation and the IoT enabled AD cars to perform automated 
functions in potentially dangerous situations. In the AUTOPILOT project, new devices of this kind 
have been developed, such as water level sensors, IoT-G5 ITS stations, smart traffic light, etc. (see 
D2.4). The Traffic Package concerns the information generated and consumed from those devices, 
harmonized with the legacy systems currently used by the TCCs and similar service providers for the 
exchange of traffic information and traffic data, for example DATEX II. 

Well assessed data models for the devices already standardized in the scope of the Intelligent 
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Transport Systems have been adopted whenever it was possible. On the other hand, for the novel 
IoT devices such as the water level sensors, and the jaywalking detectors, ad hoc data models have 
been specified. 

Traffic package has four different sub-packages. An example of the resource tree of the Application 
Entity for the Livorno PS on the oneM2M platform is shown on Figure 32. 
 

 
Figure 32. An example of the resource tree of an AE. 

• Traffic Control Center sub-package 
• DENMs generated or validated by the TCC 
• Content of validations 

• DATEX II sub-package 
• Events (pushed at occurrence) 
• Status (periodically updating) 

• NB-IoT sub-package 
• Water level sensors 

• RSU sub-package 
• JSON format of ETSI ITS-G5 facilities (CAM, DENM, SPAT, MAP, …) 
• Gathering CAM from vehicles 
• Content and status changes of DENMs 
• Status of the 6LoWPAN Water Level sensors 
• Status and events of the “Smart Traffic Light” 

Traffic Control Center sub-package 

The Traffic Control Center sub-package holds the messages and the information managed by the 
Traffic Control Center when it performs the function of a centralised ITS station. The DENM 
messages for the RSU along the highway are published there according to the ETSI C-ITS standard 
(see for example Figure 33), as well as the validation for the DENMs generated from the RSUs 
detecting hazards on the highway by means of their own sensors. 
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Figure 33. Overview of the ETSI C-ITS DENM Message Elements 

DATEX II sub-package 

The DATEX II sub-package shows the traffic events of the highway according to the DATEX II node 
deployed in the TCC. The traffic events are stored in two containers: “Events” receives via real time 
Push notification the last event occurred on the highway (e.g. roadworks, accidents, abnormal 
traffic, etc.); “Status” takes a snapshot of the current situation every hour, notably each content 
instance encompass all the active events occurring in the highway at question time. The data model 
of the messages is exactly DATEX II, but the format is JSON instead of XML; as an example, in Figure 
34 the “Maintenance Works” messages are shown. 
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Figure 34. Overview of the DATEX II “Maintenance Works” Message Elements 

EPackage: Maintenance Works 
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NB-IoT sub-package 

The NB-IoT sub-package collects the data published by the water level sensor specific to the Livorno 
pilot site. In this case, the structure is very essential: the keys are just “state” (1 or 0), “timestamp”, 
“position”. 

RSU sub-package 

The RSU sub-package encompasses the data produced by the IoT enhanced ITS Station placed at the 
road side. The RSU receives and transmits data communicating with vehicles, sensors, traffic light 
and TCC. The CAM messages received from the vehicles via the ETSI ITS G5 radio are published in 
JSON format to the oneM2M sub-container, as showed in Figure 35. 

 

Figure 35. Overview of the ETSI C-ITS CAM Message Elements 

The DENM broadcasted to the vehicle via ETSI ITS G5 radio is also published to the oneM2M when a 
new hazard event is triggered and every time that the DENM is updated or terminated. In these 
cases, the format is the same as the one shown in Figure 33.  

The RSU can forward to the oneM2M platform also the data coming from a sensor because it is a 
border router for Wireless Sensor Networks as well. For those devices the data model is the same as 
that of the NB-IoT sensor. When the RSU is placed in the urban context, it is connected to the 
“smart” traffic light (see D2.4), thus the data published to the oneM2M include the message for the 
pedestrian detection at crossroad (see Figure 36) and the Signal Phase and Timing Message (ETSI ITS 
G5 SPAT message) of the traffic light, according to the scheme shown in Figure 37.   
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Figure 36. Pedestrian Detected Event Message 

 

 
Figure 37. Signal Phase and Timing Message ETSI C-ITS SPAT Message Elements 

6.3.4 Parking Package 

The parking spot service allows end users to access information about parking spot locations and 
availability. Operational work of the service requires receiving real-time updates about the states of 
parking spots. These updates are published through an IoT Platform which allows multiple users to 
aggregate this information. Information about parking spots include both static and dynamic data. 
Static parking spot data are the time-invariant properties of the parking spots, such as their 
geographical locations, shapes, access points, etc. These properties usually remain constant or might 
change only rarely. Dynamic data represent parking spot properties that are expected to change 
over time. A typical example of the dynamic information is a parking spot occupation status 
(occupied or free) which changes as soon as a car enters or leaves the parking spot. Only dynamic 
information is going to be published through the IoT platform. 

Different data models for parking spots are introduced by the transport community:  

 FIWARE Parking Harmonized Data Models [FPM18] 

 TomTom On-Street Parking [TTP18] 

 Datex II Parking Publications Extension [DATEX2] 
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We selected DATEX II to represent the parking package, since DATEX II is an official multi-part 
standard, maintained by CEN Technical Committee 278, CEN/TC278, (Road Transport and Traffic 
Telematics). 

 

Figure 38. DATEX II Parking Extension – High-Level Data Elements 

Figure 38 shows high-level data elements (classes) of the DATEX II parking model extension. 

 Element ParkingTablePublication contains information about the parking spots (location, 
basic properties). 

 Element ParkingStatusPublication is used for operational updates about parking spot 
occupation. 

 Element ParkingVehiclesPublication is dedicated for the parked vehicle and is out of scope 
our work. 

The Parking Table contains static information of parking sites and groups of parking spots. This 
covers urban or interurban parking areas, with both on-street and off-street parking (e.g., parking 
garages, parking places, motorway parking, etc.). Within one parking area, information can be 
specified down to groups of parking spots or even for individual parking spots. 

The list below represents the main topics and properties covered by ParkingTablePublication: 

 Parking allowance for different types of users and vehicles 

 Basic parking information (number of parking spots, parking time and fees, etc.) 

 Special conditions for specific users or vehicles (e.g., disabled permit, private permit) 

 Information about an owner of a parking spot or group (name, address, etc.) 

 Geographical location and drop off and pick up points 

 Electric charging possibilities including technical characteristics and connection types 

 Detailed rate information including specifications for different user / vehicle types, different 
seasons, payment options and booking fees 

 A colour mapping for visualisation of possible occupancy statuses 

The ParkingStatusPublication element is used for publishing information about parking spot 
occupancies and other dynamic properties, such as validity of parking spots. We extended the 
ParkingStatusPublication element to support project-specific information, such as confidence levels 
indicating the reliability of the published status (since this is typically detected by sensors). 

6.3.5 AVP Package 

The AVP package covers IoT “event” and “command” data models that define messages exchanged 
between IoT devices like an AD vehicle, a drone and an IoT platform in the corresponding use case. 
For the AVP use case the defined IoT event data model supports three types of IoT-devices (AD-
vehicle, drone and camera). The IoT command data model defines communication messages that 
flow between an AD-vehicle and a MAV drone. 
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Figure 39 shows IoT devices like a vehicle, MAV and camera publish IoT event messages to the IoT 
platform and subscribe to AVP command messages published by the IoT AVP application. 

 

 

Figure 39. IoT event and command message exchange between IoT devices and IoT platform 

6.3.5.1 AVP IoT Event Data Model 

The AVP IoT event data model supports three types of IoT devices (AD-vehicle, drone and camera) 
and is described in this section. The model is based on the existing standardized SENSORIS vehicle 
data model. This model has been extended in case of vehicle and adapted in case of RSU-camera and 
MAV to support information specific to the AVP use case (see Figure 40). The AVP IoT event message 
itself consists of status information (e.g. avp vehicle status, current vehicle charging status, current 
vehicle position, parking spot occupancy and obstacle detection) published by an AD-vehicle, MAV or 
RSU camera to the IoT platform.  

 

 
Figure 40.  Supported AVP IoT event data models  

The already existing SENSORIS vehicle data model has been extended to support the AVP use case. 
SENSORIS vehicle model was adopted to support raw IoT data from coming from vehicles in the 
AUTOPILOT project. Specific to the AVP use case status information (AVP status message) has been 
identified, specified and integrated into the existing SENSORIS data model (see Figure 40). In 
addition to the existing PositionEstimate event message relevant to the AVP use case, there are 
three new AVP event messages AVPVehicleStatus, AVPVehicleChargingStatus and 
ParkingSpotDetection has been defined and integrated into the SENSORIS model: 

 PositionEstimation (existing): an AD-vehicle has to send on regular basis its current position 
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to the IoT platform, so that the driver can observe in real time on their smartphone how’s 
valet parking procedure is going on. The SENSORIS vehicle data model provides 
PositionEstimation data model. 

 AVPVehicleStatus (new): Models AVP status of a vehicle. 

 AVPVehicleChargingStatus(new): Contains charging status of a vehicle. 

 ParkingSpotDetection (new): Contains parking spot occupancy detection information in case 
of vehicle is equipped with sensors to detect free parking spots. 
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Figure 41. AVP IoT event data model specification for AD-vehicle as extension of SENSORIS 

RSU-Camera IoT event data model 

Camera as an IoT device in the AVP use case provides parking spot occupancy and object (e.g. 
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obstacle) detection information. For such purposes a camera was installed in the corresponding AVP 
parking area, configured to detect parking spot occupancy and connected to the IoT platform. This 
camera publishes events to the platform. An RSU-camera data model specification is new and is 
based on the SENSORIS vehicle data model. A full specification of the camera event message as 
defined within the DMAG is shown on the Figure 42. 

 
 

Figure 42.  AVP IoT event data model specification for RSU-camera based on SENSORIS 

MAV (drone) IoT event data model 

MAV as an IoT device in the AVP use case provides parking spot occupancy and object (e.g. obstacle) 
detection information. After the MAV has received an AVP command flies to the specified parking 
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spots, verifies if the spots are empty and/or if there are obstacles on the road and publishes this 
information to the IoT platform. The MAV data model is new and is based on the SENSORIS vehicle 
data model. A full specification of the MAV IoT event message as defined within the DMAG is shown 
in the Figure 43. 

 
Figure 43.  AVP IoT event data model specification for MAV based on SENSORIS 
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6.3.5.2 AVP IoT Command Data Model 

Command data model defines an AVP command message that contains instructions required by an 
IoT device like an AD-vehicle or a drone to run valet parking or initiate detection of free spots. These 
IoT devices must first subscribe to AVP commands published on the IoT platform. Depending on the 
type of the target IoT a command message consists of two parts: VehicleAVPCommand and 
DroneAVPCommand. A full specification of the AVP command data model is depicted in Figure 44. 

 

 
Figure 44.  AVP IoT command data model specification for AD-vehicle and MAV 

6.3.6 Platoon Package 

Platooning use case implementation usually based on a combination of: 
1. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication using ITS-G5 

short-range communication. This is used for exchanging operational data (related to vehicle 
control, safety information) which typically require real-time low latency communication. 

2. V2I communication and I2V using long-range cellular communication to support 
communications with IoT infrastructure. This is used to exchange tactical and strategic 
information related to platoon management, tracking, routing etc. This is typically less time 
critical or even not real-time. 

Platooning IoT data model only focus on the information exchange with IoT infrastructure for 
platoon management implemented in a platooning service. 

Platooning service needs to support a complex use-case which includes platoon formation, lane 
assignments, traffic light interaction and speed advices. Therefore, a service implementation (e.g. in 
Brainport) consists of two main modules: 

 Platoon Formation: long distance communication is used to get vehicles which want to join a 
platoon to the agreed location at the agreed time. 

 Platoon Management: information exchange needed to manage a platoon when vehicles are 
platooning (a short range). This is required for platoon monitoring (tracking and tracing) and 
for platoon management in local traffic (lane and speed advice, passing traffic light). 
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To supports these two modules multiple messages are used. There are two types of messages 
identified:  

 Coming from individual vehicles and/or a platoon. 

 Coming from the Platooning Service 

IoT Messages 

All messages defined in the platoon package have a set of typical properties:  

 message identifier, 

 station identifier which identifies an entity (e.g. device, vehicle, service) which generated a 
message, 

 time stamp of the message. 

Figure 45 shows message types defined in the platoon package. 

 

Figure 45. Platoon package message types. 

Messages defined in the package: 

 IoT_CAM messages are received from individual vehicles. This is based on Cooperative 
Awareness Message (CAM) standard which is available from ITS-G5 (ETSI EN 302 637-2). This 
message type includes information related to vehicle and its state. A limited set of attributes 
from the IoT_CAM type of message are used in platooning, these attributes describe vehicle 
state such as vehicle position, heading, and speed. With this information it is possible to 
track and trace individual vehicles. 

 PlatoonStatus. Messages of PlatoonStatus type come from vehicles in a platoon and contain 
information actual platoon status like, amongst others, a unique platoon identifier, platoon 
state (available, forming, platooning, leaving), vehicle role (leader, following, trailing), the 
numbers of vehicles in the platoon. 

 PlatoonFormation. Messages of PlatoonFormation come from vehicles that want to join a 
platoon. Such messages are actively used in the platoon formation stage and include a 
rendez-vous location and an estimated time of arrival. 

 PlatoonAdvice. Message of this type are used when vehicles are already in a platoon and 
their purpose is to align a platoon with local traffic conditions and road situation. This 
message type includes information on lane assignment/advice, speed advice or traffic 
intensity. 
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 IoT_SPAT. This is based on SPAT (Signal Phase and Timing) messages which are available 
from local Traffic Light Controllers at the intersection. This message type is a subset of the 
original SPAT message type and includes information regarding intersection, related 
direction of travel across intersection and contains state-time-speed information. 

 And additional auxiliary object types such as FormationAdvice, PathToPointOnMap, and 
SharedWorldModel which are used in the messages defined above. 

6.4 Conclusion 

The DMAG has proposed the common IoT data models based on existing data models (SENSORIS 
and DATEX II) and extensions on them to support the use case implementations in the project and 
increase interoperability level between platforms and pilot sites. 

Table 13 shows conformance to the common models at the pilot sites. 

Table 13. Status of the common data model implementation 

Pilot Sites  
vs. Use Cases 

Finland 
(Tampere) 

France 
(Versailles) 

Italy 
(Livorno) 

The 
Netherlands 
(Brainport) 

Spain 
(Vigo) 

South Korea 
(Deajeon) 

Automated Valet 
Parking 

–   + +  

Highway Pilot   + –   

Platooning  –  +   

Urban Driving – – + – + – 
Car/Ride Sharing  –  –   

There are two common reasons why some of the use case implementations are not compliant with 
the designed common data models: 

 An implementation of a use case has started earlier than the model proposed and finalized 
by DMAG. 

 A proprietary or incompatible standard already exists and supported by local infrastructure 
and/or devices/sensors. 

Even though not many pilot sites actually followed recommendations from DMAG usually data 
models that are used by the pilot sites are based on industry standards such as SENSORIS or DATEX II 
which were considered as a baseline for the models elaborated in the project. Having said that, 
enforcing industry standards and/or additional legislations to decrease a number of 
standards/formats used in AD function implementations may reduce further interoperability costs. 

So standardisation or enforcing standards is a crucial task when an implementation of a feature 
requires communications with several systems and services especially AD features that affect quality 
of life and safety of mobility. 
 

7 Evaluation and Conclusion 

In this section we provide overall conclusion of the IoT platform implementation and lessons learned 
during the project implementation, tests and runs handled in the project. 

7.1 Evaluation of the IoT Platform Implementation 

There are eight IoT platforms were identified and implemented in the project, more than the total 
number of the pilot sites organized in the project. That means we have more than one IoT platform 
per pilot site in average. There’s an absolute leader of the pilot sites, Brainport, where five platforms 
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were implemented and used in the test cases. So, despite the features provided by the platforms are 
comparable to each other, maintaining several platforms and making them interoperable may be 
challenging. So, common terminology, support of standards by the platforms and interoperability 
are vital to have. 

In general, all IoT platforms serve a goal of bringing devices online, collecting data from many 
devices, providing access to the data, and analyzing the data. As IoT platform is a broad term and 
almost every vendor define it in its own way, users may hit a terminological problem when assessing 
functionality of IoT platforms. In fact, basic functionally of any platform requires following: 

 Device connectivity/discovery 

 Device management 

 Device messaging  

 Information security 

All the project platforms provide this minimal basic functionality and in fact they provide much more 
features. But a common problem is that they have their own terms and definitions. So, when a user 
tries to register a device the process may be similar on a high level but differs in details. This 
difference in IoT terminology and concepts defined by the platforms should be considered when one 
builds a federated IoT architecture that spans across geographically distributed sites and requires 
participation of many partners and IoT platforms. 

Even though the platforms implemented in the project are from different vendors and support 
different protocols/standards, there is one standard that should be probably considered as a 
common or as an interoperable standard for potential future implementations – oneM2M standard. 
Out of eight IoT platforms three of them (Sensinov, TIM, openMTC) are oneM2M compliant and 
more and share the same concepts. An IoT platform from Huawei implemented in the project 
provides a oneM2M Interworking Proxy Entity which implements oneM2M MCA interface and 
therefore the platform may interface with other oneM2M compliant platforms. In total this makes 
four platforms compatible and this is a very notable achievement. 

In Brainport where most of the platform were used, we also verified that the platforms are either 
interoperable out of box or can be made interoperable. There were implemented three gateways 
connecting FIWARE, Huawei and IBM platforms to the interoperability oneM2M platform by 
Sensinov. This brings IoT architecture to another layers – a federated IoT architecture as it was 
designed initially in the project and such an architecture is fundamental in large IT environments 
such cities and countries. 

7.2 Lessons Learned 

This task 2.3 “Development of the open service platform” as part of the Work Package 2 
“Development Integration and Verification” was one of the AUTOPILOT’s most complex tasks, which 
includes implementation and integration of several proprietary and open source IoT platforms 
across six pilot sites. These IoT platforms had to be efficiently designed, built to work in synergy as 
specified in the federated IoT architecture and had to integrate various IoT ecosystems deployed at 
the pilot sites. 

 An important point is that the results of this task were the prerequisites of the implementation and 
testing of the use cases at the pilot site. Therefore, implemented IoT platform infrastructure as an 
outcome of this task had to be delivered in a short time and be operational to facilitate activities in 
other tasks.  Next activities are closely related to the task: 

 Development and deployment of an optimal and efficient open IoT service platform that can 
be used at different pilot sites to demonstrate autonomous driving use cases.  

 Specification of the common IoT data models that can be used at the pilot sites to exchange 
information between components, e.g. between IoT devices, AD enabled vehicles and IoT 
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platforms. 

 Development of the gateway proxy to interconnect several IoT platforms to ensure platform 
interoperability. 

Besides the abovementioned activities there were other activities that may look straightforward, but 
they are in fact time consuming and important for overall success of task 2.3: 

 Coordination of the IoT platform implementation activities between the pilot sites, which 
was not an easy task due to a number of involved partners from the different pilot sites. 
Several phone conferences and face-to-face meetings have been initiated to discuss open 
questions and action points required to solve in the implementation and integration of IoT 
platforms at pilot sites.  

 Synchronization and coordination of work efforts for the implementation of the several 
gateway proxies required to interconnect different IoT platforms and achieved platform 
federation and interoperability. For these purposes a few collaborations were created: 

o Collaboration 1 (IBM, Sensinov, TNO, and DLR):  to implement a gateway between 
IBM Watson IoT platform operated by IBM and oneM2M interoperability platform 
developed by Sensinov and operated by TNO. 

o Collaboration 2 (Huawei, Sensinov, and TNO): to implement a gateway between 
Huawei OceanConnect IoT platform operated by HUAWEI and oneM2M 
interoperability platform developed by Sensinov and operated by TNO. 

o Collaboration 3 (NEC, Sensinov, and TNO): to implement a gateway between FIWARE 
IOT Broker operated by NEC and oneM2M interoperability platform developed by 
Sensinov and operated by TNO . 

 Organization of the data modeling activity group (DMAG) to coordinate activities on 
standardization and modeling of data formats to be used in all the use cases. The DMAG 
started to work on the models with a delay so that the delivered IoT data models could not 
be adapted by all partners in the development of the use cases at the pilot sites. Hence early 
data modelling and standardization activities are essential for compatibility between 
implementations. 

7.3 Conclusion 

The open IoT platform architectures for autonomous driving use cases (e.g.  automated valet 
parking, urban driving, highway pilot, platooning, car/ride sharing) have been designed, developed, 
deployed and tested in the six AUTOPILOT pilot sites Brainport (The Netherlands), Versailles 
(France), Vigo (Spain), Tampere (Finland),  Livorno (Italy) and Deajeon (South Korea) as shown in 
Table 14:  

Table 14. Pilot sites and use cases in the AUTOPILOT project 

Pilot Sites  
vs. Use Cases 

Finland 
(Tampere) 

France 
(Versailles) 

Italy 
(Livorno) 

The 
Netherlands 
(Brainport) 

Spain 
(Vigo) 

South Korea 
(Deajeon) 

Automated Valet 
Parking 

+ - - + + - 

Highway Pilot - - + + - - 

Platooning - + - + - - 

Urban Driving + + + + + + 
Car/Ride Sharing - + - + - - 

There are eight different IoT platforms developed and integrated into different architecture 
components and interfaced/connected to the infrastructure of each pilot site (see Table 15). The IoT 
platforms developed in the scope of the AUTOPILOT project consist of a proprietary solution (e.g. 
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IBM Watson IoT platform, Huawei OceanConnect IoT platform) and an open source solution like 
openMTC oneM2M IoT platform. The IoT platforms are used for collecting, exchanging and 
processing data from IoT devices and AD-vehicles in the different use cases at the different pilot 
sites. 

Table 15. Pilot sites and deployed IoT platforms in the AUTOPILOT project 

Pilot Sites  
vs. Use Cases 

Finland 
(Tampere) 

France 
(Versailles) 

Italy 
(Livorno) 

The 
Netherlands 
(Brainport) 

Spain 
(Vigo) 

South Korea 
(Deajeon) 

IBM Watson IoT  - - - + + - 
FIWARE - - - + - - 
HUAWEI 

OceanConnect  
- - - + - - 

SENSINOV 
oneM2M  

- + - + - - 

openMTC 
oneM2M  

+ - - - - - 

TIM oneM2M  - - + - - - 
MESIM IoT  - - - - - + 

MobiMaestro  - - - + - - 

The AUTOPILOT IoT services platform was designed as federation of several IoT platforms to achieve 
interoperability between the different platforms. For this purpose, an oneM2M standard compatible 
IoT platform (operated by SENSINOV) was deployed as an “oneM2M interoperability platform” and 
an interconnection gateway proxy was implemented to connect the interoperability platform to the 
proprietary platforms like IBM Watson IoT, HUAWEI OceanConnect, and FIWARE platforms. 
Interoperability between the platforms was successfully tested at the Dutch pilot site (Brainport) in 
the automated valet parking use case and in the car/ride sharing use case.  

During pilot site test activities various IoT devices, autonomous driving vehicles, and different IoT 
platforms from different vendors have been used.  

A common set of standardized IoT data models were required to support interoperability between 
use case implementations and between pilot sites (e.g. AVP use case in Brainport, Tampere and 
Vigo). These models standardize information data exchange between IoT devices (e.g. road site 
camera, MAV-drone, parking lot), AD enabled vehicles, road side units (e.g. traffic lights), and 
implemented IoT platforms in the project. These models leverage interoperability between all 
components. The IoT common data models were designed and implemented within the Data 
Modelling Activity Group (DMAG) and consist of several packages for traffic, parking, AVP, 
platooning data objects. The models were used in the use case implementations at the pilot sites in 
Italy, The Netherlands, and Spain. 

The results achieved in the AUTOPILOT project show that IoT technologies with cloud support can 
facilitate autonomous driving functions in use cases such as urban driving/vehicles rebalancing, 
car/ride sharing, platooning, highway driving and automated valet parking.  
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8 Annex 

8.1 Interacting with the SENSINOV oneM2M Platform 

This annex provides examples how to interact with the Sensinov oneM2M platform. 

Table 16. Interacting with Sensinov oneM2M Platform 

 

 

 
 
 

Generate credentials for a new Application Entity 
POST /server HTTP/1.1 

Host: oneM2M-endpoint 

X-M2M-Origin: Cae-admin 

X-M2M-Key: changeme 

Content-Type: application/json;ty=19 

Accept: application/json 

{ 

  "m2m:asar": { 

  "rn":"asarTest",  

  "aae":["Cae-test"], 

  "apci":["mypassword"] 

 } 

} 

Register Application Entity (AE) 
POST /server HTTP/1.1 

Host: oneM2M-endpoint 

X-M2M-Origin: Cae-test 

X-M2M-Key: mypassword 

Content-Type: application/json;ty=2 

Accept: application/json 

{ 

 "m2m:ae": { 

  "rn": "aeTest", 

  "rr": false, 

  "api": "test.company.org" 

 } 

} 

Create Content Instance inside Container 
POST /server/aeTest/cntTest HTTP/1.1 

Host: oneM2M-endpoint 

X-M2M-Origin: Cae-test 

X-M2M-Key: mypassword 

Content-Type: application/json;ty=4 

Accept: application/json 

{ 

 "m2m:cin": { 

  "rn": "cinTest", 

  "cnf": "application/json", 

  "con": "{\"temperature\":21,\"timestamp\":1517912099}" 

 } 

} 
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Retrieve latest Content Instance from Container 
GET /server/aeTest/cntTest/la HTTP/1.1 

Host: oneM2M-endpoint 

X-M2M-Origin: Cae-test 

X-M2M-Key: mypassword 

Accept: application/json 

Retrieve all Content Instance from Container 
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