

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 731993.

Grant Agreement Number: 731993

Project acronym: AUTOPILOT

Project full title: AUTOmated driving Progressed by Internet Of Things

D.1.6

FINAL OPEN IOT VEHICLE PLATFORM SPECIFICATION

Due delivery date: 30.06.2019

Actual delivery date: 30.09.2019

Organization name of lead participant for this deliverable: CRF

Dissemination level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE
Restricted to a group specified by the consortium (including the Commission
Services)

CO
Confidential , only for members of the consortium (including the Commission
Services)

2

Document Control Sheet

Deliverable number: D1.6

Deliverable responsible: Visintainer Filippo , CRF

Workpackage: WP 1

Editor: Visintainer Filippo, CRF

Author(s) – in alphabetical order

Name Organisation E-mail

Visintainer, Filippo CRF filippo.visintainer@crf.it

Galli, Mauro CRF mauro.galli@crf.it

Bosi, Ilaria LINKS ilaria.bosi@linksfoundation.com

Brevi, Daniele LINKS daniele.brevi@linksfoundation.com

den Ouden, Jos TUE j.h.v.d.ouden@tue.nl

Sousa Schwartz, Ramon TNO ramon.desouzaschwartz@tno.nl

Schreiner, Floriane VEDECOM floriane.schreiner@vedecom.fr

Marcasuzaa, Hervé VALEO Herve.marcasuzaa@valeo.com

Scholliers, Johan VTT Johan.Scholliers@vtt.fi

Petrescu, Alexandre CEA alexandre.petrescu@cea.fr

van den Brand , Jan Willem TT JanWillem.vandenBrand@tomtom.com

Balraj, Marimuthu NEVS balraj.marimuthu@nevs.com

Document Revision History

Version Date Modifications Introduced

 Modification Reason Modified by

V0.1 28/01/216 Basis (D1.6) Task assigment CRF

V0.2 LINKS: IoT standards used; TNO:
minor modifications on description;
VEDECOM: use case car rebalancing
refined description; prototypes nr;
specs of TS France prototype;
VALEO: updated prototype specs;
CEA: IoT updates in French TS; VTT:
updates TS Finland; TT: updates on
TT prototypes; NEVS: updated
Chapter 1.4.4.2 and table 15; CRF
update prototype.

LINKS, TNO; VEDECOM, VALEO,
CEA, VTT, TT,NEVS, CRF

V1.2 Modif. CEA, VEDECOM, TU\e CEA, VEDECOM, CRF

V1.4 Version for peer review CRF

V1.5 20/09/2019 Amended version after peer review CRF, addressing comments and
integrating modifications
suggested by three peer
reviewers: Daniele Brevi (Links),
Mariano Falcitelli (CNIT), Sadeq
Zougari (AKKA)

V2.0 30/09/2019 Final formatting for submission ERTICO

3

Abstract

This document reports the final vehicle IoT platform, as defined and demonstrated in the
AUTOPILOT EU project. The Open IoT Vehicle platform has been deployed in car prototypes,
enabling Autonomous Driving functions and Use Cases. D1.6 is an upgrade of the preliminary
specifications (D1.5) based on the implementation, as final result of Task 1.3.

Legal Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium members shall have
no liability to third parties for damages of any kind including without limitation direct, special,
indirect, or consequential damages that may result from the use of these materials subject to any
liability which is mandatory due to applicable law. © 2017 by AUTOPILOT Consortium.

4

Abbreviations and Acronyms

Acronym Definition

ACC Advanced Cruise Control

AD Autonomous Driving

ADAS Advanced Driving Assistance System

API Application Programming Interface

AVP Automated Valet Parking

CAD Connected and Automated Driving

CAN Controller Area Network

C-ITS Cooperative Intelligent Transportation
Systems

DGNSS Differential Global Navigation Satellite
System

EC European Commission

GA Grant Agreement

GNSS Global Navigation Satellite System

HMI Human Machine Interaction

ICT Information and Communication
Technology

IoT Internet of Things

LiDAR Light Detection And Ranging

LTE Long Term Evolution

MQTT Message Queuing Telemetry Transport

OEM Original Equipment Manufacturer

PF Platform

PS Pilot Site

RSU Road Side Unit

RTK Real Time Kinematics

TS Test Site

UI User Interface

V2I Vehicle-to-Infrastructure
(communication)

V2V Vehicle-to-Vehicle (communication)

V2X Vehicle-to-Everything (communication)

VIN Vehicle Identification Number

VIP Vehicle IoT Platform

VRU Vulnerable Road User(s)

WM World Model

WP Work Package

WSN Wireless Sensor Network

5

Table of Contents

1 Executive Summary ... 9

2 Overview of the In-Vehicle IoT Platform... 10

2.1 Vehicles become part of the IoT ... 10

2.2 IoT applied to Autonomous Driving and Mobility ... 11

2.2.1 Use Case: automated valet parking ... 11

2.2.2 Use Case: Highway Pilot .. 12

2.2.3 Use Case: platooning ... 12

2.2.4 Use Case urban driving .. 13

2.2.5 Service: real-time car sharing .. 14

2.3 In-vehicle IoT platform within the on-board system... 15

2.4 Proof-of-concept: AUTOPILOT IoT and AD vehicle prototypes 18

2.4.1 AD vehicle prototypes in Tampere Pilot Site ... 18

2.4.2 AD vehicle prototypes in Versailles Pilot Site .. 19

2.4.3 AD vehicle prototypes in Livorno Pilot Site ... 26

2.4.4 AD vehicle prototypes in Brainport Pilot Site .. 31

2.4.4.1 TNO prototype ... 33

2.4.4.2 NEVS prototype .. 35

2.4.4.3 TUEIN prototype .. 37

2.4.4.4 VALEO prototype.. 39

2.4.5 AD vehicle prototypes in Vigo Pilot Site .. 42

3 Needs, Functional architecture and Requirements ... 44

3.1 Top Level Requirements .. 44

3.2 Functional architecture ... 45

3.3 Requirements .. 48

4 Specifications .. 61

4.1 Survey of IoT technologies .. 61

4.1.1 Remote Management ... 61

4.1.2 Context Awareness .. 62

4.1.3 Data Management ... 63

4.1.4 Security and Privacy .. 64

4.1.5 Communication Interoperability ... 64

4.1.6 Syntactic and Semantic Interoperability ... 71

4.1.7 Application container or runtime environment .. 73

4.2 Specification of In-Vehicle IoT platform in the different Pilot Sites 74

4.2.1 In Vehicle IoT Platform of Tampere Pilot Site ... 75

4.2.2 In Vehicle IoT Platform of Versailles Pilot Site .. 76

6

4.2.3 In Vehicle IoT Platform of Livorno Pilot Site .. 76

4.2.4 In Vehicle IoT Platform of Brainport Pilot Site .. 78

4.2.4.1 TNO prototype ... 78

4.2.4.2 NEVS Prototype .. 79

4.2.5 TUEIN prototype .. 80

4.2.5.1 VALEO prototype.. 83

4.2.6 In Vehicle IoT Platform of Vigo Pilot Site ... 84

5 Conclusions and outlook.. 86

6 References .. 88

7

List of Figures

Figure 1 – Different layers of IoT: 1) Car zone, 2) Cooperation zone, 3) Smart city zone 10
Figure 2 – Car sharing use case architecture ... 15
Figure 3 – IoT High View Architecture: conceptual separation in AUTOPILOT 16
Figure 4 – In-Vehicle IoT platform (red box) with the vehicle concept scheme 16
Figure 5 – Sensors installed in the Finnish automated vehicle prototype 18
Figure 6 – In-vehicle architecture of the Finnish prototypes ... 19
Figure 7 – Image of a French prototype ... 20
Figure 8 – Overview of VEDECOM prototype sensors ... 21
Figure 9 – Overview of synergy for French prototype ... 21
Figure 10 – In-vehicle architecture for French prototype.. 23
Figure 11 – Illustration of the car Network set inside the VFLEX, with IoT Platform and others
computers .. 24
Figure 12 – Gateworks Ventana SBC inside its enclosure .. 24
Figure 13 – Features of Gateworks Ventana SBC, GW5400 .. 25
Figure 14 – CRF vehicle prototype in Livorno (upper right) and Links in-vehicle IoT platform (lower
left) ... 27
Figure 15 – General scheme of Italian Test Site vehicles ... 28
Figure 16 – CRF connected vehicles ... 29
Figure 17 –AVR connected vehicles ... 29
Figure 18 – CRF AD & Connected vehicles ... 30
Figure 19 – Components and interfaces of Italian Test Site AD & connected prototypes. 30
Figure 20 – In-vehicle high-level architecture for Brainport pilot site 31
Figure 21–TomTom survey vehicle used for adding automotive grade sensors for localization32
Figure 22 - TomTom prototype for technology validation .. 33
Figure 23 – TNO prototype vehicle (source: TNO website) ... 34
Figure 24 – TNO vehicle scheme .. 34
Figure 25 – NEVS vehicle scheme .. 36
Figure 26 – NEVS vehicle scheme .. 37
Figure 27 – Scheme of the TU/e AD vehicle: Prius .. 38
Figure 28 – TU/e prototype vehicle ... 39
Figure 29 – Final implemented TU/e prototype vehicle architecture, as used in pilot tests. . 39
Figure 30 – Valeo prototype vehicle: VW Tiguan... 40
Figure 31 – Valeo prototype vehicle: Jaguar F-Pace .. 40
Figure 32 – Valeo prototype vehicles: common functional view .. 41
Figure 33 - Architecture of the AD vehicle prototypes used in Vigo Pilot Site 42
Figure 34 – Interfaces between the main components at Vigo Pilot Site 43
Figure 35 - High-level functional architecture ... 45
Figure 36 – In Vehicle Architecture .. 46
Figure 37 – Online horizon service, example from TomTom ... 62
Figure 38 – AMQP Architecture ... 66
Figure 39 – AMQP Message representation .. 67
Figure 40 – MQTT description scheme .. 68
Figure 41 – DDS Architecture ... 69
Figure 42 – 6LoWPAN integration ... 70
Figure 43 – Interworking through SMG and IPE .. 73
Figure 44 – OSGi and IoT similarities (source: OSGi Alliance) .. 74
Figure 45 – General gateway layer in IoT devices .. 81
Figure 46 – Modular principle of the Flowradar G5 gateway .. 81

8

Figure 47 – Gateway layer functionality filled in with two interconnected units, one for the ETSI ITS
G5 access and one for 4G. ... 82

List of Tables

Table 1 – Interface between main components - high level description 17
Table 2 – Maturity and relevance of TomTom prototype ... 33
Table 3 – Functional architecture components vs. functionality... 48
Table 4 – Functional requirements .. 49
Table 5 – Non-Functional requirements .. 56
Table 6 – In Vehicle IoT Platform of Tampere Pilot Site .. 75
Table 7 – Vehicle data (IF5 interface) implemented in Tampere Pilot Site 75
Table 8 – In Vehicle IoT Platform in Versailles Pilot Site .. 76
Table 9 – Vehicle data (IF5 interface) implemented in Versailles Pilot Site 76
Table 10 – In Vehicle IoT Platform of Livorno Pilot Site ... 76
Table 11 – Vehicle data (IF5 interface) implemented in Livorno PIlot Site 77
Table 12 – Additional IoT devices data (IF6 interface); Livorno Pilot Site vehicles.................. 78
Table 13 – In Vehicle IoT Platform of TNO vehicle... 78
Table 14 – Vehicle data (IF5 interface); TNO prototype .. 79
Table 15 – In Vehicle IoT Platform of NEVS vehicle ... 79
Table 16 – Vehicle data (IF5 interface); NEVS prototype... 80
Table 17 – In Vehicle IoT Platform of TUEIN vehicle .. 80
Table 18 – Vehicle data (IF5 interface); TUEIN prototype ... 83
Table 19 – In Vehicle IoT Platform of VALEO vehicle ... 83
Table 20 – Vehicle data (IF5 interface); VALEO prototype .. 84
Table 21 – In Vehicle IoT Platform of Vigo Pilot Site .. 84
Table 22 – Vehicle data (IF5 interface) implemented in Vigo Pilot Site 85

9

1 Executive Summary

AUTOPILOT Task T1.3 was aimed at identifying the specifications of the Open IoT vehicle platform.
This includes the definition of the format to be used for exchanging data between the in-vehicle
proprietary network and the IoT platform components embedded into the vehicle itself, enabling
the possibility to develop different OEM-specific gateways thanks to the openness of the resulting
architecture. The functionalities of the IoT platform were also specified taking into account AD
functions and use-cases, considering the adaptation required for their implementation as well.
Moreover, the possibility to introduce additional sensors and components into the existing vehicle
architecture was analysed, with a particular emphasis on the new generation connectivity
technologies which are not yet available on the market.

The AUTOPILOT has developed IoT-architectures and platforms which will bring Automated Driving
towards a new dimension. AUTOPILOT IoT enabled automated driving cars have been tested in real
conditions in the pilot sites Tampere, Versailles, Livorno, Brainport, Vigo as well as the Korean pilot
site. The latter is not treated here, as from initial discussions, it did not have a specific in-vehicle IoT
platform, but rather V2X connected with IoT infrastructure.

Task T1.3, devoted to the in-vehicle IoT platform definition, delivered initial requirements and of the
IoT in-vehicle platform (D1.5 [1]) in the first project phase. In this last phase, after integrating the IoT
in vehicle (D2.1 [3]), testing and evaluating the prototypes (WP3, WP4) task 1.3 has updated the
specifications, keeping however the main aspects of the in vehicle IoT platform as defined in D1.5.

A vehicle IoT platform can be seen as an aggregation point for sensors and actuators which extends
the vehicle functionalities provided by OEM equipment. It coordinates the connectivity of these
devices to each other, to OEM sub-systems and to the external networks. From a logical perspective,
it acts as the IoT Gateway component of an IoT infrastructure.

The work within WP1 and then in WP2 progressed as planned: the IoT platform prototypes were
integrated in the vehicle; demonstrators have been used in the Test Sites for the intended use cases.
The differences from the initial specifications are related to specific test site implementation and are
generally due to practical reasons, keeping the IoT architecture defined in AUTOPILOT in line with
the original plan. Therefore, the original D1.5 structure has been maintained, and reflects the
workflow followed in the task: starting from target use cases, outlining test site implementation,
focusing on car prototypes, giving the general representation of the IoT platform and providing the
specifications. The main differences are included and highlighted in the sections describing the
prototypes for the different Test Sites and the specifications.

Chapter 1 presents target use cases that have been tested in the pilots, their technological maturity
and, where applicable, the future plans.

Chapter 2 reports the basic functionalities and requirements of the Vehicle IoT platform.

Chapter 3 reports the final specifications of the In-Vehicle IoT platform for each pilot site.

10

2 Overview of the In-Vehicle IoT Platform

2.1 Vehicles become part of the IoT

Nowadays, smart cities, roads and highways are becoming more and more digitalized and connected
as numerous sensors have been widely deployed for various purposes (e.g. vibration sensors,
cameras, etc.). Those connected devices form a large scale IoT system with geographically
distributed endpoints, generating a huge volume of data streams over time. Potentially, big data can
help us increase efficiency in various domains such as transportation, safety, and environment. In
the Autonomous Driving (AD) area, IoT gives new capability to the in-vehicle system especially in
environment perception, enhances the existing AD functions such as valet parking, highway pilot,
platooning and empowers current sensing systems such as pedestrian detection in a city. It also
enables efficient car sharing services, by providing up-to-date information. In order for the vehicle to
be part of an IoT eco-system, it needs to be equipped with an In-Vehicle IoT platform, a
hardware/software gateway that connects the existing in-vehicle system with other entities on
board (car zone), in the vicinity (cooperation zone) or in a larger area (Smart City).

Figure 1 – Different layers of IoT: 1) Car zone, 2) Cooperation zone, 3) Smart city zone

Automotive IoT differs from C-ITS, in that Vehicle-to-Everything communication (V2X) is “given” as a
link to collect information from different sources, while the research focus is on the representation
and management of exchanged data at application level within an “IoT World”, in order to benefit
from its characteristics (abstraction, scalability, etc.). A major benefit coming from IoT is the wider
availability of information, as it enables a data fusion between the vehicle own sensors (cameras,
radars, LiDARs, etc.) and external information, to consolidate the so-called local dynamic map (LDM).
The LDM stores objects describing the current situation of a vehicle, position, obstacle, neighbouring
vehicles, points of interest and road events. This up-to-date environment representation gives the
needed information redundancy for higher SAE levels of automation [6]. The IoT approach helps to
have scalable management of all these new sensors enriching this LDM.

The overall AUTOPILOT IoT architecture, defined in Task 1.2, starts from the “things” (including AD
cars), continues with the network layer, IoT layer, and ends with AUTOPILOT applications.
Specifically, the IoT layer can be physically located in the cloud or on the edge (e.g. RSU). It covers
functionalities such as context management, analytics, IoT device management, semantics,
processing and service optimization and so on. In this architecture, vehicles are part of the “things”
layer.

The in-vehicle IoT platform allows the vehicle to become a “Thing” part of the “IoT World”. To
achieve this, several possible software & hardware solutions are possible and can be applied based
on the specific implementation choices. Vehicles also receive IoT information through specific

11

devices that do not represent a vehicle platform (e.g. IoT connected electronic horizon, V2X radio
transceivers, telematic on board units) but these devices alone are out of the scope of this D1.6.

2.2 IoT applied to Autonomous Driving and Mobility

Hereafter, we provide a brief summary of use cases enabled by the integration of a vehicle with the
IoT World [5].

2.2.1 Use Case: automated valet parking

Automated valet parking (AVP) has two main scenarios:

 Autonomously parking of the vehicle, after the driver has left the car at the drop-off point,
which may be located near the entrance of a parking lot.

 Autonomous collection of the vehicle. When the driver wants to leave the site, he/she will
request the vehicle to return itself to the collect point, using (for example) a smartphone
app.

To navigate safely around the parking lot to/from its parking place, the automated vehicle uses
driving functions based on knowledge about the environment around the vehicle. An example would
be a navigation functionality based on a digital map, positions of the automated vehicle and vacant
parking spots. The vehicle can use its own functions and sensors to accomplish this task, but it can
also benefit from accessing IoT platforms which can provide data and functions based on IoT
enabled sensors like parking cameras. Parking cameras can also warn the vehicle about other
vehicles and pedestrians in the parking lot. Furthermore, IoT platforms may offer booking and
payment services.

The IoT platform can identify empty parking places, and hence inform the car or its destination.
Besides navigation, also functionality on the tactical decision level may be shifted to the IoT-platform
so that less functionality is required on the vehicle itself. Through the use of IoT, the IoT platform
can monitor and/or coordinate traffic on the parking lot and do efficient route planning based on
real time available traffic. Hence, the IoT platform will exchange information on the dynamic and
static obstacles in the parking lot and/or the route to be followed to the vehicle.

Interaction between the vehicle and the outside world/IoT platform is needed for:

 Determination of the destination point (parking place, collect point).

 Identification when the vehicle is ready to move unmanned to the destination (parking place
or collect point), e.g. when the driver has moved out of the proximity of the vehicle or has
locked the doors. The IoT platform informs the vehicle when to start moving to the
destination. In case of motion to the collect point, the vehicle should be woken up.

 Synchronization of the vehicle’s world model and the model at the IoT backend, including a
more detailed layout of the parking place and the location of dynamic objects.

 Navigation to the destination, following a route either determined by the vehicle or the IoT
platform, while avoiding obstacles detected by either the vehicle sensors or the IoT
platform.

 Remote connection between the vehicle and a control centre during unmanned driving. The
operator of the control centre becomes the “driver” of the vehicle (in Finland and the
Netherlands the vehicle driver does not have to be in the vehicle). Remote connection
includes uninterrupted observation from the vehicle, e.g. through traffic cameras. The
vehicle should respond to control commands of the control centre, e.g. performing
emergency stop, or take-off.

 Transmission of observation data from IoT sensors or of events detected by IoT sensors (e.g.
pedestrians or other objects on the parking place) to the vehicle.

12

 When the vehicle has arrived at the parking place, the vehicle goes to a low power
consumption mode, with acknowledgement of the control centre or the IoT platform.

 If the driver requests the vehicle to the control point, the IoT platform has to validate the
request by the vehicle, and if the request is valid, start the collecting process.

 At the collect point, the vehicle must validate that access to the vehicle is provided to the
authorized driver.

2.2.2 Use Case: Highway Pilot

In the Highway Pilot use case, a cloud service merges the sensors measurements from different IoT
devices (in particular from vehicles and roadside cameras) in order to locate and characterize road
hazards (puddles, roadworks, potholes, bumps, fallen objects, etc). The goal is then to provide
incoming vehicles with meaningful warnings and adequate driving recommendations (taken into
account by the Autonomous/Assisted Driving functions) to manage the hazards in a safer or more
pleasant way. Built upon collective learning of IoTs, this “6th Sense Driving anticipation” mechanism
aims at replicating people driving experience and road awareness into autonomous vehicles.
The vehicle needs an on-board IoT-like platform to handle the various sources of data (IoT sensors
like Lidar, Camera, IMUs, etc) with the various local detection services. Also, this platform will handle
the maps/alerts data processed and displayed within the vehicle’s screens (IoT displays).

In addition, an interaction between the vehicle and the outside world/IoT platform is needed to:

 transfer, from the Vehicle to the Cloud, all likely anomalies detected by IoT sensors within
the Vehicle.

 transfer, from cloud to vehicle, Live Maps information provided by the Maps provider.

 transfer from cloud to vehicle, Road Hazards alerts emitted by the Cloud service.

The retrieval into the vehicle of ADAS adaptation instructions published by the Control Centre.

2.2.3 Use Case: platooning

The platooning use case consists of vehicles following another preceding vehicle at relatively close
distance. This brings benefits in terms of traffic throughput and homogeneity, enhancement of
traffic safety due to small speed variations and relative low impact velocities in collisions, and
reduction of fuel consumption and emissions due to lowering the air drag.

A few variants of platooning are deployed and evaluated in AUTOPILOT:

 An urban variant to enable car rebalancing of a group of driverless vehicles (up to 4),
involving one driver in the leading vehicle driving at a maximum speed of 20 km/h. The
scenario to be implemented in Versailles will start from one of the AUTOPILOT car sharing
station where the driverless vehicles will join the leading vehicle to form a platoon. The
platoon will then move to the other car sharing station, where automated parking will also
be used to position the vehicles on the foreseen parking slot.

 A highway variant at Brainport, where one or more highly automated vehicles follow a
leading vehicle on the highway. Also in this variant, the usage of a dedicated lane is
considered, i.e. the electronic allowance of the emergency lane is explored. The scenario will
start from a platooning appointment that has been made and will consider the forming of
the platoon. An approaching lead vehicle will pick up the following vehicle, which has just
arrived from automated parking. Dynamic pick up of the vehicle will be explored, where
platoon forming is done while driving. After the platoon is formed, it will drive from the city
of Helmond to the city of Eindhoven. On their way, other vehicles may join or leave the
platoon dynamically.

Driving in a platoon requires vehicles to use inter-vehicle communications to anticipate timely on

13

maneuvers of other vehicles in the platoon. The following vehicles have automated steering and
distance control to the vehicle ahead and the control is supported by advanced V2V communication.
IoT enables the interaction between platooning vehicles with infrastructure, traffic management and
services, thereby bringing more efficiency in terms of platoon maneuvering, such as platoon
forming. In addition, IoT can effectively extend the range of awareness from what it is currently
provided by in-vehicle or road-side sensors, as well as improve the confidence of detected dynamic
objects and traffic information by providing redundant sensor information.

The interaction between vehicle and external entities via the IoT platform is required for exchanging
coordination parameters/commands to improve efficiency in terms of platoon maneuvering
capabilities, such as platoon forming and vehicles organization:

 Vehicles can send requests to the platooning service based on input from the driver, to
make themselves available as vehicle platoon leaders.

 Position, velocity and planned route including intents for exiting motorway via off ramps or
entrance via on-ramps is sent to platooning and car sharing services for overall traffic
management and platooning coordination.

 Traffic light status, decision to cross an intersection and speed recommendations are sent
from the platooning service (Traffic Light Assist Service) to the vehicles in order to keep the
platoon formed in intersection scenarios.

 After entering the highway, vehicles in the platoon send a request to the platooning service
for confirmation of permission to use priority lanes, e.g., emergency lane.

 Platoon vehicles receive speed advice from the platooning service based on current traffic
conditions.

 If the platoon is not disengaged as determined by the platooning service (e.g., after leaving
designated allowed area), the platooning service may send a command to move and stop
platoon vehicles in a nearby emergency lane.

 Vehicles which are not a member of a platoon also send their position, velocity and planned
route to IoT services, e g., traffic management, to improve overall traffic coordination.

 World model data, generated by the vehicle based on internal sensors’ data, is shared with
IoT cloud services. These services can improve global awareness on the road by processing
and fusing world model data from different road users (vehicles and VRUs) and sending it
back to each vehicle to effectively extend and increase the reliability of each vehicle’s local
world model.

 Information aiming for (redundant) localization can be exchanged between the vehicle and
IoT services, e.g., real-time HD maps and GPS error corrections with RTK DGPS services.

2.2.4 Use Case urban driving

Urban Driving assisted by the IoT has the main objective to support connected and automated
driving (CAD) functions through the extension of the electronic horizon in automated vehicles. This
means that the vehicle can process data from external sources complementing those provided by its
own sensors (cameras, LIDAR, radars, etc.). In the framework of AUTOPILOT, the automated urban
driving use case focuses on:

 the interaction of the AD cars with traffic lights and real-life traffic,

 the robustness of the AD functions of the vehicle,

 the safety issues when vulnerable road users are involved,

 the positioning enhancement.

Indeed, in order to enhance the performances of AD functions in the urban environment, the
vehicle needs to extract relevant information from:

 traffic lights at intersections,

14

 hazard warnings.

 infrastructure cameras (detecting events such as pedestrians, bicycles, obstacles).

 other vehicles sharing their own sensors’ data.

 data shared from VRUs by means of connected devices (e.g. smartphones, smart glasses,
etc.).

This additional information is transmitted wirelessly to an on-board IoT platform and permits the
CAD system to adapt its behaviour accordingly. The on-board IoT platform will have to act as a new
source for the perception module of the CAD system, but also for the other vehicles.

Moreover, by the integration of an IoT platform into the in-vehicle architecture, the electronic
horizon extension is taken to a new dimension. With C-ITS, the communication range is limited to
the traffic lights of approaching intersections. IoT integration will set the basis for enabling the
access to a larger volume of data (faraway traffic lights, routing, pedestrians, hazard warnings,
priority to automated vehicles).

Integrating the IoT platform in the CAD system introduces the challenge of fusing all this new
information with the existing on-board data (provided by the vehicle sensors). As mentioned above,
a large amount of data being more or less informative (the exchanged data may range from raw
sensor data to hazard warnings) can be available. Therefore, it is required that the data obtained
through IoT is described using standard description.

As an example, VRU detection for safe driving has to be accomplished in AUTOPILOT and requires
that all the dynamic obstacles located in the surrounding environment of the CAD system are
expressed in terms of position, speed and acceleration. Therefore, the formatting, encoding
(syntactic) and meaning (semantics) of the different structures are a fundamental requirement of
this use case, more details about this syntactic and semantic interoperation are available in section
4.1.6.

Following an IoT architecture, the information and the interaction between the vehicle and the
outside world/IoT platform are needed for:

 Traffic light status and time to change.

 Hazard warnings.

 VRU detection by the infrastructure.

 VRU detection by the vehicle.

 VRU detection by connected objects such as smartphones, smart glasses, smartwatches, etc.

2.2.5 Service: real-time car sharing

A car sharing service is intended as a tool to enable different customers to make use of a fleet of cars
(either self-driving or not) shared amongst them. It can be interpreted as a service that finds the
closest available car and assigns it to a single customer, or drive the closest available car to the
interested customer. It can also be intended as ride sharing, where multiple customers possibly
having different origins and destinations, share a part of the ride on a common car. Finally, car
sharing services can also be considered as services that allow customers to specify pick-up and drop-
off time-windows to increase flexibility and planning.

The car sharing service matches vehicles with customers’ requests of origin and destination locations
and several other requests (ride alone or with somebody, possibly time-windows.

It utilizes a new authentication service using mobile App both for web and car access. The
authentication will follow privacy by design approach, user will be provided with anonymous or
semi-anonymous credentials while preserving a possibility of investigation of incidents by authorized
entities.

15

The focus in AUTOPILOT is on the interaction between the various car sharing actors and
components and the Open IoT platform common services as a whole, represented as one box in
Figure 2.

Figure 2 – Car sharing use case architecture

Users should book cars and manage (modify, cancel, etc.) their bookings using the central car sharing
service through a mobile or desktop application, referred to as the client app.

The proposed architecture requires that shared vehicles should be equipped with the necessary
hardware and software to: (1) communicate their probe data (GPS location, speed, etc.) to the open
IoT platform common services and the car sharing service, and (2) compute optimal routes and their
costs (distance, energy consumption, etc.) given an assigned destination. These may be fully
implemented inside the vehicle itself, or may be delegated to external web services.

IoT-enabled devices and vehicles of the IoT ecosystem should publish relevant events (traffic,
accidents, weather, parking spot availability, etc.) on the open IoT platform. In order for the car
sharing service and shared cars to be notified about events that may affect their planned trips, they
should subscribe to the open IoT platform for relevant events.

The open IoT platform should be responsible for collecting data from the various IoT devices, storing
them, and communicating the relevant pieces of data (events) to the subscribers.

2.3 In-vehicle IoT platform within the on-board system

The vehicle itself can be considered in two ways: (1) as an IoT device, but also (2) as an edge
computing unit and gateway for other IoT devices. It is a mobile node within the whole eco-system,
producing and consuming content from and to the general IoT Platform.

The IoT Platform is composed of central units (cloud) and distributed edge computation nodes
(edge) and creates a unifying view of the IoT entities. IoT enabled applications use the interface to
the IoT Platform in order to interact with IoT entities; this represents the aforementioned option (1),
i.e. of applications running outside the vehicle, the latter being a IoT entity. But applications can also
run in the in-vehicle platform, this case corresponding to option (2). The “IoT Platform” is the set of
functions that manages the IoT devices and entities, while we define “In-Vehicle IoT Platform” the
complex entity that includes all the software and hardware components deployed in the vehicle. In

16

general, and IoT Application is deployed partially in the vehicle, as some information is only available
and used locally (edge), and has a cloud counterpart to exchange service related information. A
closer look into the vehicle platform is presented in Chapter 3 , where the vehicle functional
architecture of AUTOPILOT is presented.

Figure 3 – IoT High View Architecture: conceptual separation in AUTOPILOT

The scheme of Figure 4 shows the logical placement of the In-Vehicle IoT platform within the vehicle
components, to receive information from existing (Sensors) and next generation (C-ITS) components
and to connect with the cloud IoT system but also to legacy cloud services.

Figure 4 – In-Vehicle IoT platform (red box) with the vehicle concept scheme

The next table outlines the interfaces among components, i.e. what kind of data are exchanged in
order to show which are the new interfaces to be considered for the IoT connectivity.

Cloud IoT
system

IntraVehicle Network

In-vehicle IoT Platform

Addit. IoT
devices

Vehicle AD
control system

Existing
sens./devices

Communication system

C-ITS (G5)

Neighbour
entities

(vehicles/RSUs)

Existing

Project
defined

LTE

H
o

st
 V

e
h

ic
le

Outside T1.3

3° party cloud
services

17

Table 1 – Interface between main components - high level description

ID Existing/
New

Component 1 Component
2

Data /
short

description:
1 to 2

Data / short
description: 2 to 1

IF1 Existing Existing Sens./Dev. Control

OEM defined
and
proprietary/
enable
existing AD
functions

OEM defined and
proprietary / enabling
sensor functionalities
(if needed)

IF2 Existing Intra vehicle network
ITS G5/ Cellular
unit

In-Vehicle
data (as in
ETSI G5)/
enable C-ITS
use cases

Dispatching internally
received ITS-G5 data,
generated by other
entities

IF3 Existing ITS G5 Other entities

ETSI ITS G5:
CAM, DENM,
SPaT, MAP
/enable C-ITS
use cases

ETSI ITS-G5 data
generated by other
entities

IF4 Existing
Cellular /
(smartphone/embedded)

3rd party cloud
service

Car data to
cloud services
/
Infotainment,
connected
apps,
connected
sensors

Cloud data to car
applications / data
provided by remote
services

IF5 New Intra vehicle network
Vehicle IoT
platform

Car data for
IoT
/ IoT platform
gets vehicle
parameters,
which define
vehicle as
moving object

IoT data for Intra-
vehicle network / Intra
vehicle network should
include IoT data into
data fusion internal
process

IF6 New Additional IoT sensors
Vehicle IoT
platform

Sensor data to
IoT application
in vehicle /
information
from IoT
objects within
the vehicle

In-Vehicle IoT PF data
to additional sensors /
enabling sensor
functionalities (if
needed)

IF7 New Vehicle IoT platform
Communication
system

Data from
vehicle IoT to
be dispatched
outside

Data from external IoT
entities, dispatched
internally

IF8 New
Vehicle communication
system

Cloud IoT
system

AUTOPILOT
specific
messages
(could be the
same as IF3-
IF4) / vehicle
as moving
object in the
general IoT

AUTOPILOT specific
messages / related
with AUTOPILOT only

A closer look into the vehicle platform is presented in Chapter 3, where the vehicle functional
architecture of AUTOPILOT is presented.

18

2.4 Proof-of-concept: AUTOPILOT IoT and AD vehicle prototypes

AUTOPILOT has deployed several prototypes to show how the in-vehicle IoT platform can be
interfaced to in-vehicle components and connected to the IoT eco-system, to enable the pilot use
cases.

2.4.1 AD vehicle prototypes in Tampere Pilot Site

The main differences from the initial plan, regarding the IoT platform, is that the vehicle does not
use ITS-G5 in the use cases, and ITS-G5 was hence not integrated into the vehicle platform. The
communication interfaces to the IoT platform uses available LTE channels.

This research vehicle prototype has been demonstrated in controlled environments, and has been
tested on public roads. The software is still in prototype level but compiling to a licensed package
has been started. The Technology Readiness Level (TRL) is 7 “system prototype demonstration in
operational environment” [2].

VTT provided one automated vehicle for AUTOPILOT project, Marilyn 2.0 is a Citroen C4 (Figure 5),
which has been updated for automated driving, by installing electric actuators for control of throttle,
steering wheel and brake. Marilyn 2.0 is the first passenger car in Finland, which received permission
for autonomous driving in real traffic. The car is equipped with advanced sensor technology,
software solutions and automated driving functions. The vehicle has been modified for automated
driving.

Figure 5 – Sensors installed in the Finnish automated vehicle prototype

The following use cases were demonstrated in Finland TS in Tampere:

 Urban driving: intersection support. Traffic signal data are collected in real time from the
traffic signal server of the city of Tampere Potential conflicts, observed by traffic cameras,
will be transmitted to the vehicles.

 Automated valet parking: a traffic camera installed at the parking lot assists the vehicle in
the parking manoeuvre.

Figure 6 shows the in-vehicle architecture of the prototype. The vehicle scheme is organized in the
following component groups:

 Communication devices: communication between the vehicle and backend systems is

19

through cellular (3G/4G) communications.
o Cellular interface for communication to IoT clouds.

 Sensing devices:
o RTK-GPS sensor and additional sensors, such as odometer and IMU.
o Environmental perception sensors, including radar, LIDAR and cameras, as described

above and shown in Figure 5.
o Vehicle CAN-bus interface.

 On board Units:
o AD unit: set of devices responsible for the real-time functions, including fusion of the

data of both the different positioning sensors and of the environmental sensors for
detecting and classifying objects, for threat assessment, trajectory planning and
control of the automated vehicle.

o IoT in-vehicle platform, managing the IoT services:
 Urban driving support:

 Traffic light support.

 Detection of VRUs at pedestrian crossings.
 Automated valet parking

 Control of the vehicle: destination (parking place, pick-up point), and
route, allowing to start manoeuvre.

 AD/Units outputs:
o Actuators: components that act on the commands determined by the AD Unit to

control basic vehicle functions such as steering, braking and acceleration.
o HMI: user interface for the driver.

Figure 6 – In-vehicle architecture of the Finnish prototypes

2.4.2 AD vehicle prototypes in Versailles Pilot Site

VEDECOM achieved a fleet of 3 vehicles (VFLEX prototypes) for the French pilot site. VFLEX is a SAE
L4 prototype made from a Renault Twizy which has been modified in order to perform autonomous
driving uses cases.

20

Figure 7 – Image of a French prototype

First, thanks to VEDECOM’s collaboration with Renault, the Twizy has been transformed into an
open robotic platform (with open access to the CAN bus of the vehicle). On top of that, the VFLEX is
equipped with:

 Two CONTINENTAL radar ARS 408 (one at the front and one at the back).

 One perception camera provided by TU Eindhoven.

 One VALEO ultrasonic belt.

 One VLP 16 Velodyne lidar on the roof.

 One SBG inertial sensor.

The In-vehicle IoT platform (hardware and software) is guaranteed by CEA.

The prototype system as a whole has achieved a TRL of 6 and will be integrated into the roadmap of
future activities of connected and autonomous vehicles. The VFLEX can be part of a global mobility
service managed by a central control center, including different types of vehicles such as robot taxis,
shuttles and urban pods.

The embedded IoT platform (IP-OBU) delivered by CEA (the component used for communication
aspects) is compliant to TRL 7: system prototype demonstration in operational environment.

The whole system has been tested and assessed in Versailles City during Urban Driving and
Platooning use cases piloting sessions, in real-world traffic, without dedicated or protected lanes.

21

Figure 8 – Overview of VEDECOM prototype sensors

The basic driving functions such as steering, breaking, throttling as well as the automation system
(with lidar/radar perception), the handling of vulnerable road users as well as the generation of the
trajectory are managed by VEDECOM.

The software of the perception camera (obstacles detection and SLAM) has been provided by TU
Eindhoven. Figure 9 shows how partners are involved on the VLEX platform.

Figure 9 – Overview of synergy for French prototype

Functional architecture

The main functions selected for the French prototypes in autonomous driving mode are:

 Follow a predefined itinerary.

 Track and keep the driving lane.

 Respect the road rules (stop at red light, stay below maximum speed, stop at stop sign, …).

22

 Avoid obstacles (adapt speed, stop or change lane).

The main functions in platooning mode are:

 Change direction by following the vehicle in front.

 Stay at close distance to the vehicle in front.

The main functions in parking maneuvers mode are:

 Exit a parking spot.

 Position behind a predefined vehicle.

 Park in a specific parking spot.

In order to achieve these functions, the system shall have the following technical functions:

 Detect, qualify and filter obstacles (using direct or collaborative perception).

 Identify road rules (speed limit, traffic light state, stop signs…).

 See road surface markings.

 Locate the vehicle position.

 Save a reference itinerary.

 Start the vehicle (manually or wirelessly).

 Switch between the 4 driving modes: manual, autonomous, parking maneuvers, platooning.

 Change the vehicle direction.

 Start the vehicle movement.

 Accelerate the vehicle.

 Regulate the vehicle movement at a constant speed.

 Decelerate the vehicle (braking).

 Stop the vehicle.

 Shut down the vehicle and activate the parking brake.

 Give light signals (braking light, turn signals, horn…).

 Acquire driver’s commands and inform the driver (HMI).

 Communicate with the environment (with traffic lights, road users…).

 Communicate with other vehicles.

A global diagram of the French prototypes is presented in Figure 10.

23

Figure 10 – In-vehicle architecture for French prototype

“IoT Platform” and network in the car

The following description corresponds to the current state of the embedded IoT platform deployed
in Versailles PS.

The description of the IoT Platform is different from the description given in the deliverable D1.5. In
fact, formerly a YoGoKo OBU was considered to handle the in-vehicle communication. However,
since then, the hardware has been changed with a smaller device, more easy to be integrated in the
VFLEX.

In each VLFEX, the “IoT Platform” includes a Gateworks branded single board computer (SBC) of the
Ventana SBC Family. It provides a multi-interfaces board with:

 Ethernet connection to handle the IPv4/IPv6 configuration of the PC-AD;

 WiFi (802.11a/g/n) connection to handle WiFi hotspot;

 4G (LTE) connection to handle the connection to the Internet and to the cloud services;

 IEEE 802.11-OCB connection to handle Vehicle-to-Vehicle and Vehicle-to-Infrastructure and

Vehicle-VRU (Vulnerable Road Users) communication.

Respect to the YoGoKo OBU, the number of 802.11-OCB interfaces is still three (3). But, the cellular
modem (4G) is now integrated inside the Ventana board instead of being integrated by means of an
external dedicated module.

The in-car internal network links together the various computers with an IP network (see Figure 11).
In the Figure 12 the application-specific boxes and their means of communications, such as Ethernet
cables and antennas, are shown.

24

Figure 11 – Illustration of the car Network set inside the VFLEX, with IoT Platform and others computers

The Ventana board is represented hereafter with its features. We exploited three mini-PCIe sockets
to handle the IEEE 802.11-OCB communication where we put the ad-hoc modified WiFi mini-PCIe
modules. One mini-PCIe socket is used to support the 4G modem, in order to handle cellular
communication. Unfortunately, depending on the modem used, sometime the temperature inside
the box during the operations can exceed the maximum allowed. This problem will be fixed in the
next revision of the system. The storage memory is extended by a mSATA disk drive of 16 Gb to
enable long duration data logging.

Figure 12 – Gateworks Ventana SBC inside its enclosure

25

Figure 13 – Features of Gateworks Ventana SBC, GW5400
1

The experience during the previous piloting indicates several limits:

 Throughput limits: during the pre-piloting tests and due to RTMaps application messages

frequencies matter, we were able to face the bandwidth limits of the IEEE 802.11-OCB used

to handle the V2V communication. In fact, a signal was sent with a frequency of 10 kHz

instead of 20 Hz and that caused the usage of the whole available bandwidth even more the

dysfunction of the whole platooning system, as consequence of a very high latency. Even

though the current need is not to send at such a high frequency the messages between the

vehicles, a similar problem may occur when it would come to transfer sensor data between

cars. That is why in the future, it might be a good thing

o to improve the capabilities of the embedded communication device, in terms of

latency and bandwidth. For that, we would like to implement IEEE 802.11bd

standard that is under development; we would use an open source ath10k driver

(Atheros for 802.11ac) rather than IEEE 802.11-OCB on top of ath9k (Atheros for

802.11n) as currently in use.

o to implement IEEE 802.11 QoS data Headers rather that IEEE 802.11 Data Headers as

currently in use. That would allow to apply different data transfer policies according

to the priority of the messages.

 Evolution of cellular modems: the tests also revealed some limits of the cellular modem

usage in some area of Versailles PS in terms of network coverage, as well as in terms of

overheating issue that we would like to address in the next months. A possible solution for

1
 http://www.gateworks.com/imx6-single-board-computers-gateworks-ventana-family/item/ventana-gw5400-

network-processor

26

the network coverage problems would be to change the network operator that provides

better coverage if available. For the temperature, an alternative solution would be to study

the usage of other cellular modems that support higher temperature values.

 Evolution of the communication device in general:

o We would like to make the on-board IoT platform (including the CEA IP-OBU) to run

IPv6-only in the future, to align with the evolution of IoT in general. Currently, there

are two OCB interfaces that are working in IPv6-only and the Ethernet interface that

could run that way if needed (currently the Ethernet interface is working in both

IPv4 and IPv6). Our wish is to also use IPv6-only in the LTE interface which is

currently working in IPv4-only. For that, we might need either to perform some

modifications in the kernel or to change LTE modem hardware.

o It would be interesting to add GNSS Galileo module in order to complete the

features available in the communication device.

o We are thinking also about the possible usage of pre-5G modem in order to switch

from 4G-V2X to 5G-V2X.

The results of the works done in AUTOPILOT for the IoT embedded platform would be exploited in

three directions:

 The results concerning the limits of the different subsystems of the communication device

(IP-OBU) and software2 would be used to find ways to improve technically the solution. That

would help in particular for problems encountered in LTE communication interface

(coverage, latency and temperature) and IEEE 802.11-OCB interfaces (bandwidth

improvement).

 The results of the project in general are promising and are used to create added-value in

terms of IPR. At CEA, we submitted a patent application request to the French Bureau of

Industrial Property (Institut National de la Propriété Industrielle - INPI) thanks to the work

that we did in V2V communication protocol for Platooning Use Case.

 Thus the results are also exploited to contributed to the advancement of technology. We

contributed to Internet Drafts, as well as to a ETSI technical report related to IPv6-based V2X

communications [ref. ETSI/IPv6-based V2X (ISG IP6), .

2.4.3 AD vehicle prototypes in Livorno Pilot Site

Regarding the in-vehicle IoT platform, with respect to the initial version of the node architecture,
some changes have been made, with the purpose of improving the solution, as further explained in
the following. For pothole detection, the initial concept was to use the 6LoWPAN sensor in the OBU
architecture to detect the vehicle vibrations. But later on, given the availability of other connected
vehicles, but without the CAN interface (Figure 17) an IMU (Inertial Measurement Unit) was
introduced to allow not only to measure vertical accelerations for pothole detection, but also to

2 In particular we are referring to OCB driver, CFIO/CFOI, V2V. In particular CFIO are CAM From
Inside to Outside: CAM - Cooperative Awareness Message generated (in XER format) by the
embedded computer (PC-AD) of each car in order to be sent (in UPER format) outside of the car
throught OCB interface; CFIO are CAM From Outside to Inside (received (in UPER format) from
external ITS-stations such as roadside units, connected bykes, throught an OCB interface and that
have to be transmitted to the PC-AD); CFIO/CFOI software package handles CAM conversion and
transmission from the vehicle's inside to the vehicle's outside (XER over Ethernet to UPER over IEEE
802.11-OCB) and vice versa (UPER over IEEE 802.11-OCB to XER over Ethernet)

27

record most of the vehicle data about its dynamics, such as lateral, longitudinal accelerations and
yaw-rate.

In fact, some internal components of LINKS OBU work in a more stable way when dealing with values
of dynamics from IMU. We expect these changes to ease the post processing the logs from both
DSRC/ETSI ITS G5 and IoT messages and to improve the overall OBU as a product.

The experimentation has permitted to successfully trial the OBU in relevant environments, such as
Highways and urban-suburban areas, with many runs in hours and kilometers of successful testing,
including the demonstration programmed at Livorno in October 2018. This has matured the OBU in a
TRL6, namely “technology demonstrated in relevant environment” [2].

Figure 14 – CRF vehicle prototype in Livorno (upper right) and Links in-vehicle IoT platform (lower left)

Hereafter the final description of the vehicle prototypes used in Livorno Pilot Site is provided:

 IoT connected prototypes (by CRF and AVR), equipped with: a communication platform with
both ETSI ITS and LTE connectivity; sensors to get information from the environment; on
board unit that elaborates the collected information to give warning notification to the
driver or to broadcast aggregated information to the other road users.

 AD & Connected prototype (by CRF), with the same kind of device of the Connected
prototype with in addition some modules to enable autonomous driving functionalities. The
outputs of these devices permit the control of the actuators (breaking and steering system,
adaptive cruise control) managing the vehicle behaviour.

A general scheme is shown in Figure 15.

28

Figure 15 – General scheme of Italian Test Site vehicles

 Communication devices
o Cellular: Cellular LTE interface to Tx/Rx information from the cloud
o DSRC: Wireless communication module based on ITS-G5 technology to communicate

with vehicles in the neighborhood and with the road infrastructure.
o 6LoWPAN: Wireless communication based on IEEE802.15.4 radio to communicate

between Wireless Sensor Networks on-board and the IoT vehicular platform.

 Sensing devices
o GPS: It estimates the position of the vehicle (latitude, longitude, heading, speed etc.)
o Pothole detector: it detects the presence of pothole in the street during the vehicle

motion using a dedicated sensor.
o Frontal sensor: It is a radar and/or camera able to detect obstacle placed in front of

the vehicle.
o Vehicle CAN data: it provides data from sensing devices installed in the normal

production vehicle as odometers, accelerometers, information on the vehicle state,
etc.

 On board Units
o IoT On Board Unit: It manages the bidirectional DSRC communication. It

encodes/decodes V2X messages (CAM, DENM, SPAT, MAP). It receives information
from the cloud, from connected vehicles/road infrastructure and from sensing
devices including the WSNs. It aggregates this IoT information and shares it.

o E-Horizon: It matches the vehicle position to an “HD Map” (High Definition Map) and
it estimates the most probable path as well as alternatives paths that the vehicle will
follow. It manages dynamic events as the variable speed limits.

o AD Unit It is the main component of the Autonomous Driving system. The logic for
the decision-making runs inside this device.

 AD outputs
o Actuators: these components transform digital output of the board in action. In

particular, the steering system, the braking system and the adaptive cruise control
(ACC) system permits the automated vehicle control.

29

o HMI: it receives data from on board units and shows to the driver warning
notification in case of dangerous scenarios.

The following pictures represent CRF and AVR connected vehicles (Figure 16,Figure 17) and CRF
automated vehicles (Figure 18).

Figure 16 – CRF connected vehicles

Figure 17 –AVR connected vehicles

Cellular

ETSI
ITS-G5

IoT On Board
Unit (LINKS)

Vehicle
CAN-Data

HMICommunication
Devices

Sensing Devices

On Board Unit

Warning
Outputs

GPS

CloudsOther
connected

vehicles
RSUs

Information
sources

Cellular

ETSI
ITS-G5

IoT On Board
Unit (LINKS)

Pothole
detector

HMICommunication
Devices

Sensing Devices

On Board Unit

Warning
Outputs

GPS

CloudsOther
connected

vehicles
RSUs

Information
sources

30

Figure 18 – CRF AD & Connected vehicles

The communication interfaces of AD & connected vehicles in Livorno PS are shown in Figure 19.

Figure 19 – Components and interfaces of Italian Test Site AD & connected prototypes.

Cellular

ETSI
ITS-G5

IoT On Board
Unit (LINKS)

Frontal
Sensors

HMICommunication
Devices

Sensing Devices

On Board Unit

AD/Warning
Outputs

GPS

CloudsOther
connected

vehicles
RSUs

Information
sources

Vehicle
CAN-Data

AD Unit
(dSPACE)

Connected
E-Horizon

(Conti)

Actuators

LINKS
board

MQTT / 6LoWPAN /
IMU cable

31

2.4.4 AD vehicle prototypes in Brainport Pilot Site

Figure 20 shows the in-vehicle IoT platform high-level architecture for the AD vehicle prototipes
used in Brainport Pilot Site. It includes concepts and components that are common to all the
prototypes involved in the Use Cases tested in Brainport. The architecture conceptually separates
safety-critical and non-safety-critical components to allow critical components in the vehicle to work
at all times, even in the event of communication loss with external entities (e.g., IoT services or V2X
communication).

Figure 20 – In-vehicle high-level architecture for Brainport pilot site

Safety-critical components address functionalities in the operational level of the vehicle, thereby
requiring high reliability and timely updates. Vehicle AD (Autonomous Driving) application contains
the operational vehicle planning and control that will be specific to each vehicle provider and use
case. In-vehicle sensors are connected to the system via in-vehicle communication (e.g., CAN bus,
Ethernet) and will also be vehicle provider specific. Examples of internal sensors are cameras, radars,
motion sensors, etc.

Non-safety-critical components address functionalities in the tactical and strategic levels of the
vehicle, thereby posing less strict time and reliability requirements. IoT apps will consume and
process data coming from external entities such as IoT Cloud services, other vehicles in the
surroundings (V2X), Roadside units (RSUs) and Vulnerable Road Users (VRUs) via external
communication links such as Cellular LTE or V2X ITS G5 communication.

The ‘Vehicle world model’ component creates a high-level view of the surroundings that can be used
by either the Vehicle AD application or IoT apps in both safety-critical and non-safety critical levels.
This component will combine and fuse data coming both from: (i) in-vehicle sensors to create the
‘Ego world model’, and (ii) external entities such as IoT cloud services via the IoT broker, roadside
units or other vehicles (V2X) to create the ‘Shared world model’. Depending on applications’

32

requirements, the output is one or more application specific vehicle world models. Each world
model provides high-level description of objects (e.g., shape of cars, pedestrians), road/lane (e.g.,
road shape) and optional semantics information (e.g., classification of objects). This allows, for
example, operational path planning algorithms to make the best decision at a certain point in time
based on an extended view of the environment that is currently relevant to the ego vehicle.

In the event of communication loss with the external entities, the vehicle world model component
will rely solely on the in-vehicle sensor data to create the world model that would correspond in this
case to the ‘ego world model’. In this manner, the overall system benefits from external data when
available to extend its range of awareness and yet it remains robust against communication failure.

In the project, the ‘In-vehicle IoT platform’ comprises the ‘Vehicle world model’ and IoT apps which
together build the bridge from the in-vehicle system to the external IoT world. The high-level
architecture above intentionally hides components that might be vehicle provider specific, such as
high- and low-level controllers that can be specified in different ways within the ‘Vehicle AD
application’. Also, the use of a standardized IoT broker such as the oneM2M platform is conceptually
grouped into the ‘Shared world model’ sub-component that is gathering data from external entities.

TomTom contributes in Autopilot to the development of a localization sub-system and a streaming
service for map delivery. The intention was to integrate those developments in the test vehicles for
the Brainport platooning- and highway pilots. This service would have been used in the different
brain-port use-cases to access the map. However, Localization in the HD-Map did not fit in the
available vehicles. TomTom has then set-up its own car for technology validation purposes as shown
in Figure 21. This car is based on a survey vehicle with high cost sensors used to create ground truth,
extended with a localization sub-system that connects to the map delivery service and to different
automotive grade sensors such as Lidar, Camera and Radar (see Figure 21).

Lane accurate localization in combination with HD Map data enables lane accurate navigation. The
online horizon has been replaced with Autostream for HD-Map. Live information such as hazards
and traffic jams are downloaded alongside the HD-Map via location based dynamic objects.

Figure 21–TomTom survey vehicle used for adding automotive grade sensors for localization

33

Figure 22 - TomTom prototype for technology validation

The maturity of TomTom prototype is according to the component, shown in Table 2.

Table 2 – Maturity and relevance of TomTom prototype

Component Readiness

Exploitation

Vehicle platform
TRL 6 Used for map recording, technology validation

and partner collaborations

HD-map delivery
service

TRL 7 Commercial map product for automotive
customers

Localization software
TRL 4 used for technology validation (HD-map and its

delivery) and partner collaborations

Visualization software TRL 6 used as visualization tool of HD-map products

Platform for Hazard
service

TRL 3 used as tool for partner collaborations

2.4.4.1 TNO prototype

Overall TNO has made only minor changes to the vehicle architecture specified in D1.5. These
changes concern the decision to use a single processing unit instead of two, as initially planned.

Another change regards the motion planning functionality that had to be simplified due to lack of
resources, especially for the Automated Valet Parking use case. The initial intention was to
incorporate IoT data about other road objects (pedestrian, obstacles, etc.) to be fused in the vehicle
world model and thereby be taken into account by the path planning algorithm in the vehicle. This
remains an interesting topic for future work to understand how the fusion of data from multiple
sources can be effectively used by automated driving vehicles.

As per the technological maturity achieved, distinction should be made between Platooning and
Automated Valet Parking (AVP). Moreover, certain functional parts could be validated and piloted
better than other parts.

In case of platooning the goal was TRL level 7 for the whole system (vehicle plus cloud) and was

34

almost reached. Specific issues which prevented from convincingly reaching that goal are: 1)
platooning does not work well under all weather conditions; 2) the GLOSA functionality developed
does not work well in combination with smart Traffic Light Control systems; 3) the control algorithm
which acts on externally fed World Model targets could not be validated sufficiently and still has
some performance issues.

In case of AVP, the TRL level is 6 for the basic automated driving behavior (only manual gear change
for reverse) assuming a predefined external environment and also TRL 7 for the interaction between
the vehicle and the Parking service (cloud). AVP lacked however sophisticated agile motion planning
(only static routes possible) in combination with situational awareness (no real world model applied
so no detection of obstacles). These ambitions could not be realized with the resources available.

The following section describes TNO prototype vehicle.

Figure 23 – TNO prototype vehicle (source: TNO website)

TNO uses a modified Toyota Prius equipped with additional sensors to support automated driving
functions (shown in Figure 23). The general vehicle scheme of hardware components is shown in
Figure 24.

Figure 24 – TNO vehicle scheme

The vehicle scheme is organized in the following component groups:

 Communication unit: device that processes network data coming from two interfaces:
o Cellular: Cellular interface LTE(-V2X) to Tx/Rx information from IoT cloud services.
o ITS-G5: Wireless communication module based on ITS-G5 technology to

communicate with vehicles in the neighbourhood and with the road infrastructure

35

(roadside units).

 Sensing devices:
o GPS module: it estimates the position of the vehicle (latitude, longitude, heading,

speed). RTK-GPS is used to enhance the positioning precision.
o Radar(s): Radars generate point cloud data of the environment that can be used for

tasks such as localization and object detection.
o LIDAR*: LIDAR will be optionally used to generate precise point cloud data of the

environment that can be used for specific tasks such as localization.
o Camera(s): camera(s) are used to get images of the environment that can be used

for specific tasks such as object classification.
o Vehicle CAN data: it provides data from sensing devices installed in the normal

production vehicle as odometers, accelerometers, information on the vehicle state,
etc.

 On board Units:
o TNO processing unit: it processes and fuses data coming from sensors and from the

communication unit to create 'world model' data that it is needed internally by
vehicle components such as path planner. Also, it shares world model data with
external entities via the communication unit. Finally, this processing unit also
includes the component responsible for control related functions that will send
commands to actuators in the vehicle.

 AD/Units outputs:
o Actuators: components that act on the commands determined by the AD Unit to

control basic vehicle functions such as steering, braking and acceleration.
o HMI: shows data currently being processed in the on board units.

2.4.4.2 NEVS prototype

The NEVS prototype is an electric vehicle (EV) platform based on a passenger car (D-class) chassis.
The vehicle provides control interfaces to the steering, propulsion and brake mechanisms to allow
realization of various AD functionalities. The specific use-cases within the project scope that will
involve the NEVS platform is defined as AVP. Due to the variety of the possible requirements of this
use-case the control interfaces are left accessible through a prototyping environment (i.e. dSpace
MABX). The platform can provide access to interior sensor readings regarding vehicle dynamic
states, e.g. rotational or translational accelerations, steering angle, brake pressures, wheel speeds,
etc.

36

Figure 25 – NEVS vehicle scheme

In addition, GPS is used to know the exact location of the vehicle and appropriate commands to
manoeveur the vehicle is given by In-vehicle IoT platform connected to MABX dSpace unit.

37

Autopilot Applications

Automatic Valet Parking

In Vehicle IoT Platform

IOT Platform

IOT Apps

Communication System

V2X ITS G5 Cellular 4G

World Model Motion planning Localization

Other vehicles/
roadside units

NEVS Vehicle Control System

GPS

Actuators HMI

CAN Interface layer

Vehicle Controller

Figure 26 – NEVS vehicle scheme

2.4.4.3 TUEIN prototype

TU/e used a modified Toyota Prius for implementation and execution in the Brainport TU/e Car
Rebalancing (Urban Driving) use case.

It has a basic Automated Driving functionality which can be controlled from a real time target (AD
unit).

38

Figure 27 – Scheme of the TU/e AD vehicle: Prius

The overall vehicle scheme is organized in the following component groups:

 Communication unit: device that processes network data coming from two interfaces:
o Cellular: Cellular interface LTE(-V2X) to Tx/Rx information from IoT cloud services

and VRU detection application
o ITS-G5: Wireless communication module based on ITS-G5 technology to

communicate with other roadusers (ie. VRU, vehicle) in the neighborhood and with
the road infrastructure (roadside units).

 Sensing devices:
o GPS module: It estimates the position of the vehicle (latitude, longitude, heading,

speed). RTK-GPS might be used to enhance the positioning precision.
o RADAR*: is available in the vehicle, but was not used in this project specifically.
o Camera(s): (Stereo-)camera(s) are used to get images of the environment that can

be used for tasks such as object classification and scene understanding and
localization.

o Vehicle CAN data: It provides data from sensing devices installed in the normal
production vehicle as odometers, accelerometers, information on the vehicle state,
etc.

 On board Units:
o Technolution IoT Gateway: Used as a gateway between the AD unit and the IoT

cloud and ITS-G5 enabled devices. It can also be used as a processing unit for
datalogging.

o TUE Automated Driving Unit: It is the component responsible for control related
functions that will send commands to actuators in the vehicle.

o NEC Crowd Estimation unit: detects crowd/persons around the vehicle based on
WiFi signals. The unit is directly communicating with the NEC FIWARE cloud and
information is being send to OneM2M platform where the vehicles can get the
information to use in rerouting applications.

 AD/Units outputs:
o Actuators: components that act on the commands determined by the AD Unit to

control basic vehicle functions such as steering, braking and acceleration.
o HMI: shows data currently being processed in the on board units.

39

For the implementation phase, starting from the same Prius model used also by TNO (see 2.4.4.1
and Figure 28), specific adaptations have been introduced.

The current architecture of the hardware implemented in the Prius TU/e prototype is shown in
Figure 29.

Figure 28 – TU/e prototype vehicle

Figure 29 – Final implemented TU/e prototype vehicle architecture, as used in pilot tests.

2.4.4.4 VALEO prototype

Valeo provides two vehicles for the needs of the Highway Pilot pothole detection use case: a
Volkswagen Tiguan is used for the Detection phase, and a Jaguar F-Pace is used for the Driving
Adaptation phase.

Actually, both functionalities might have been embedded into a single vehicle, as in the initial plan.

40

However it was soon discovered that it was more manageable (for development and piloting) and
understandable (for explanations and visitors) to split the roles.

Figure 30 – Valeo prototype vehicle: VW Tiguan

Figure 31 – Valeo prototype vehicle: Jaguar F-Pace

The VW Tiguan (Figure 30) was selected because of its generic MQB platform [13], which Valeo has
much experience with. The car was prepared with multiple and diverse additional sensors and
software units needed for road hazards detection. The Jaguar F-Pace (Figure 31) was selected
because previously equipped with computing and customizable HMIs.

Both vehicles solutions are architected around a common Valeo Smart Platform (Let’s Do), which
behaves as an In-Vehicle IoT Platform. Most modules exchanges pass through it.

Initially, the use case intended to cover a large variety of road hazards, from highly critical ones (ex:
a life-threatening car standing still on a highway) to almost insignificants ones (ex: a shallow
pothole). The industry focuses its safety efforts on the former, including in the standardization of
emergency signals in V2V for instance. However, VALEO chose to focus on the later ones which are
largely ignored and that can take better advantage of an IoT approach, where the number and
diversity of observations is more important than instant signalling. For this reason, cellular only was
favoured over dual Cellular and ITS-G5 in this implementation.

Actually, the communication link between vehicles and cloud services did not connect to an IoT open
platform for the trials, and furthermore, the in-vehicles systems themselves achieved only Technical
Readiness Level 3 (TRL 3 – experimental proof of concept) as they are equipped only pre-commercial
platforms. On the other hand Valeo could prove a concept close to an IoT service, namely anomaly
detections by car and hazard generation by cloud, meant for Highway Pilot; and at the same time,
Valeo could build on technical choices (Valeo Smart Platform, RT maps) that are in its roadmap and
can be further evolved to IoT, to facilitate the integration of other vehicles or objects.

The prototype solution can be illustrated on a single functional view as shown in Figure 32. It is also
important to mention that the vehicular native systems (native sensors, ACC control system, etc.)
are preserved, the modifications and modules are only supporting the use case, not affecting native
car functionalities.

41

Figure 32 – Valeo prototype vehicles: common functional view

The functional blocks can be further described:

 On Board Units
o Connection Module

 Reports anomalies and associated images to the Cloud
o Detections Module

 Runs IMU, Camera and Lidar processing algorithms tuned for our use case
o Valeo Smart Platform

 Handles subscriptions and messages across all the components (composed
of MQTT Broker and libraries).

o ADAS Instructions Control
 Processes received external ADAS Instructions and applies commands on

ACC
o Live Map Connector

 Retrieves live map objects (Anomalies, Hazards, ADAS instructions) from
Map Provider

 Sensing Devices:
o Most are picked from Valeo’s own portfolio.

 Communication Devices
o Handles 4G cellular connectivity

 AD/Warning Outputs
o Monitoring View

 Displays running road hazards detection
o Turn Signals

 Provides native control of lights
o ACC Functions

 Provides native control of ACC
o Central Console HMI for Live Map

 Displays local area map, test track, traffic signs, anomalies, hazards and
ADAS Instructions

o Cluster HMI for Alerts and ADAS

42

 Displays warnings, instructions or vehicle intents

2.4.5 AD vehicle prototypes in Vigo Pilot Site

The Spanish Test Site has provided 3 automated vehicles for AUTOPILOT: PSA has contributed with 2
vehicles and CTAG with 1 vehicle (PSA branded).
All the vehicles are equipped with an IoT in-vehicle platform and the necessary automatic driving
functions to support urban driving and valet parking use cases.

Figure 33 - Architecture of the AD vehicle prototypes used in Vigo Pilot Site

As an example, the architecture of the AD vehicles used in Vigo Pilot Site is described in Figure 33.
The main components and interfaces are described in Figure 34, as explained below:

 External communication:
o Cellular: Cellular LTE interface to Tx/Rx information from cloud
o ITS-G5: Wireless communication module based on ITS-G5 technology to

communicate with vehicles in the neighborhood and with the road infrastructure.
o Wi-Fi: Wi-Fi interface to Tx/Rx information from the cloud

 Sensing devices
o GPS: Estimates the position of the vehicle (latitude, longitude, heading, speed etc...)

RTK-GPS might be used to enhance the positioning precision.
o Radar and ultrasound: Generate data of the environment that can be used for tasks

such as localization (parking maneuver) and object detection.
o LIDAR: Will be used to generate precise point cloud data of the environment that

can be used for both positioning and object detection. This sensor is essential for the
indoor parking positioning when there is no GPS signal.

o Camera(s): Are used to get images of the environment that can be used for tasks
such as VRU or obstacle detection. They are also used for the positioning in Urban
Driving, providing images of lane markings.

o Vehicle CAN data: It provides data from sensing devices installed in the normal
production vehicle as odometers, accelerometers, information on the vehicle state,
etc.

 On board Units
o Communication unit: Is the component responsible for the V2X communication

43

using ETSI ITS G5 bidirectional communication, cellular communication or any other
that could be necessary during the project. This unit is also responsible to transform
the vehicle in a “Thing” within the IoT environment with the capability of being a
data provider or a data consumer. Using the communication unit, the vehicle can
communicate directly to other “Things” in its environment, as it does using V2X
communication.

o AD Unit: It is the component responsible for control related functions that will send
commands to actuators in the vehicle. This platform includes the different
perception algorithms (positioning, road description and object fusion), and the
function algorithms (route planning, state machine, motion planning and control).

 AD outputs
o Actuators: Are comprised of engine, break and steering wheel.
o HMI: Receives data from different units and displays useful information to the driver

in different places like head display, instrument cluster or head unit.

Figure 34 – Interfaces between the main components at Vigo Pilot Site

44

3 Needs, Functional architecture and Requirements

The IoT vehicle platform behaves as the aggregation point for sensors and actuators which extend
vehicle functionalities provided by OEM equipment. It coordinates the connectivity of these devices
to each other, to OEM sub-systems and to the external networks. The IoT vehicle platform can be
considered as the automotive counterpart of the IoT Gateway component of an IoT infrastructure.

3.1 Top Level Requirements

In-Vehicle IoT platform acts as a gateway which interfaces physical devices (e.g. sensors, actuators,
devices) and OEM systems, communicating with a heterogeneous approach and in a protocols-
agnostic way, with the global cloud-based IoT platform. The core functionalities required by IoT In-
Vehicle platform can be summarized in the followings:

- Interoperability: The In-Vehicle IoT platform should work with heterogeneous devices,
technologies, applications, without additional effort from the application or service
developer. Heterogeneous components need to be abstracted and must be able to exchange
data and services. Interoperability can be seen from network, syntactic, and semantic
perspectives.

o Communication interoperability should allow the platform to transfer information
seamlessly among sensors and actuators networks, physical devices and sub-
systems which use different transport protocols.

o Syntactic interoperation should allow the harmonization of formatting and encoding
structures of any exchanged information or service.

o Semantic interoperability refers to the meaning of information or services, and
should enable mutual understanding of interchanged information among the set of
devices and services connected to the platform.

- Service-based: The In-Vehicle IoT platform should be service-based to offer high flexibility
when new and advanced functions need to be added. All these and other advanced services
can be designed, implemented, and integrated in an application container, or run-time
environment, which is a service-based framework (e.g. Java-OSGi, Python, ROS, Node.js)
able to provide a flexible and easy environment for application development.

- Context-awareness: Context-awareness is a key requirement in building adaptive
applications and services and in annotating values from sensed data. The In-Vehicle IoT
platform needs to be aware of the context through a sort of “world model” (e.g. LDM), using
this for development of effective services.

- Data management: Data refer to sensed data or any information of interest to IoT
applications. An In-vehicle IoT platform needs to provide data management services to
applications, including data acquisition, data processing, data fusion at the “edge” and data
local storage capabilities to deal with network latency and reliability. Data Management also
deals with the collection of information from external elements to the vehicle (i.e. cloud /
RSU / other vehicles and infrastructures), exploiting data in order to create services such as
planning and control application related to AD system. The In-Vehicle IoT should handle
events typically with not real-time constraints. The platform could have analytics capabilities
and should be connected to the UI to interact with the driver.

- Remote management: the ability to remotely provision, configure, update, monitor,
startup/shutdown the In-Vehicle IoT platform as well as software components (i.e. services
and applications) running on the platform itself.

- Security and privacy: security needs to be implemented for both devices and applications.
Features such as authentication, encryption, and authorization need to be part of each
component of the architecture. Furthermore, every block of In-vehicle IoT platform which
uses personal information, needs to preserve the owner’s privacy.

45

- Based on open standards: communication between the stacks should be based on open
standards to ensure interoperability.

- Defined APIs: Providing an API for application developers is an important functionality. APIs
allow easy integration with existing applications and integration with other IoT solutions.
The programming paradigm (e.g., publish/subscribe, REST) deals with the model for
developing or programming the applications or services.

- Event Management, Analytics & UI: The In-Vehicle IoT should handle events typically with
not real-time constraints. The platform could have analytics capabilities and should be
connected to the UI to interact with the driver.

The listed core functionalities and needs can be summarized in the high-level functional architecture
shown in Figure 35.

Figure 35 - High-level functional architecture

3.2 Functional architecture

This section introduces the functional architecture of the Vehicle IoT Platform. This architecture is a
high-level decomposition of the Vehicle IoT Platform into major components which aim to
accomplish the general basic functionalities addressed in Section 3.1.

The architecture in Figure 35 shows that AUTOPILOT applications interact with the vehicle either
directly or via the IoT Platform (Figure 3). While, the architecture depicted in Figure 36 shows the
Vehicle IoT Platform and how it interacts with the Vehicle On-board components and with the IoT
platform. Vehicle IoT Platfom is the set of software and hardware elements that are related to IoT
world.

46

Figure 36 – In Vehicle Architecture

Architecture components can be classified in In-Vehicles Components and external components.

In-Vehicles Components:

 In-Vehicle IoT applications: consume and process application specific data via IoT broker and

can interact with other components in the system (e.g., world model). According to the type of

application, they can cover Data Management functionalities and/or interface for the final user

(UI).

 IoT broker: connects IoT devices in the vehicle with other IoT brokers in the cloud, edge or in

other vehicle/roadside units. Since it is directly related to the communication with external

applications and other systems, the IoT Broker is the interface between the vehicle and the

eternal world (cloud / edge / other vehicle).

 IoT devices: are other devices (in the edge/cloud) that are connected to the car. Software

modules implement drivers to virtualize such physical IoT devices (sensors and actuators) into

Vehicle IoT Platform, in such a way to satisfy the IoT Device Adaptation functionality.

 IoT Bridge: connects the IoT Broker, and therefore the IoT world, to the development
environment inside the car. It takes care of the exchange of data between IoT and non-IoT

47

components. Considering its bridge position between the internal components and interface
toward the external world, this component fulfils part of the APIs functionality, and also satisfies
the syntactic Interoperability functionality. In some cases the IoT Bridge and the IoT Broker can
be merged into a single component.

 World model: creates a high-level view of the surroundings that can be used by planning/control

applications and IoT apps. The vehicle world model will combine and fuse data coming both

from internal sensors and external entities such as the IoT cloud services via the IoT broker, the

roadside units or the other vehicles (V2X). The vehicle world model component will include a

high-level description of objects (e.g., shape of cars, pedestrians), road/lane (e.g., road shape)

with optional semantics information (e.g., classification of objects). This will allow the high-level

path planning and control to make the best decision at a certain point in time. Context-

Awareness functionality is satisfied with such a type of architectural component.

 Vehicle path planning and control: high-level planning and control that can leverage IoT data to

improve its functionalities (e.g., global route or speed advice coming from the IoT apps). This will

be complementary to the already present low-level control and actuators functions in the

vehicle. Data Management functionality deals with the collection of information from external

elements to the vehicle (i.e. cloud / RSU / other vehicles and infrastructures), exploiting data in

order to create services such as planning and control application related to AD system.

 Other services: Are basically anything that can be used to support the car functionalities but that

is not directly connected to the planning/control or WM (e.g. traffic light recognition, license

plate identification, Vehicle Platform configuration and Remote Management, etc…).

 Sensors: refers to sensors that are not OEM specific (e.g. MAP, MAF, lambda, etc…) and whose

purpose is usually associated with AD functions (stereo cameras, LIDAR, etc...). Software

modules implementing drivers to adapt and virtualize such sensors are needed too.

 OEM specific components: relates to components that are OEM specific such as actuators for

power steering and brakes, inputs to gearbox, or vehicle sensors needed for the “normal”

vehicle functions (MAP, MAF, ABS, etc...). Software modules implementing drivers to virtualize

such OEM specific components into Vehicle IoT Platform are needed, in such a way to satisfy the

OEM Systems Communication functionality.

 Communication system: Are the components that provide communications to the outside. Be it

a simple IP based cellular network or V2X ITS G5. These communication media can provide

information from the outside world or can send information to the outside world (e.g. V2X ITS

G5).

External Components:

 AUTOPILOT applications: these applications interface the IoT Platform and implement

AUTOPILOT function in the cloud. Each application communicates with the vehicle via the IoT

Platform. An application can also comprise a component that runs in the Vehicle Platform. These

component can be either an IoT application or an In-Vehicle application, depending on the level

of integration with the IoT platform.

 IoT Platform: this platform implements the IoT functions at the Cloud or Edge level. It comprises

also other vehicles and roadside elements.

Table 3 shows how the functional architecture components satisfy the needs and functionalities of

the Vehicle IoT Platform.

48

Table 3 – Functional architecture components vs. functionality

Architecture
Component

Functionality

In-Vehicle IoT
applications

- Data management
- Event Management, Analytics &

UI

IoT broker - Defined APIs
- Communication interoperability

IoT Bridge - Communication interoperability
- Syntactic and Semantic

Interoperability

IoT devices - IoT Device Adaptation

World model - Data management

Sensors - IoT Device Adaptation

OEM specific
components

- OEM Systems Communication

Communication
system

- Defined APIs

Vehicle path planning
and control

- Data Management

Other services - Remote Management

3.3 Requirements

Considering the various In-Vehicle IoT Platforms and Use Cases that will be implemented in the
AUTOIPILOT project, a set of detailed Functional Requirements is here collected. With the term
“functional requirements” we mean those technical requirements to realize the In-Vehicle IoT
Platfrom in practice, some of these are general for all Test Sites, and some are more specific for
single test sites. In some cases a functional requirement can be supported with the definition of a
“non-functional requirement”, that can provide descriptions of measurement details, required
thresholds for expected performances and information related with possible physical constraints.

The AUTOPILOT Work Package 1 - Task 1.3 has provided a complete data of functional and non-
functional requirements, with additional details and notes that will help next integration and
implementation phases. In Task 1.3, partners that are directly responsible of an In-Vehicle IoT
Platform prototype or involved directly in Use Case for the Test Sites, provided input related to their
implementations. The excel file that include all collected requirements is an internal AUTOPILOT
document, and here is presented a summary of the contents.

We started our collection work, defining the “primary functions” as the main categories to which to
associate a functional requirement:

 P1 In-Vehicle data: this primary function is responsible for all task related with exchange of
data with Intra-Vehicle Network (e.g. CAN bus), including vehicle positioning and timing,
vehicle AD control system and existing sensors and devices (if needed).

 P2 Communication: this primary function is responsible for all task related with
communication and connectivity with external services.

 P3 IoT devices: this primary function is responsible for all task related with exchange of data
with additional IoT devices that can be installed directly inside prototype vehicles.

 P4 In-Vehicle IoT PF Services & Applications: this primary function is related with all services
and applications hosted by the In-Vehicle IoT Platform.

49

In relation with the defined primary functions, a list of 56 functional and 53 Non-functional
requirements was produced (Table 4, Table 5). The table reports a Requirement Identifier
(ID#), the link to Parent requirement (P# Link), Usecase, Title and Description.

Table 4 – Functional requirements

ID#

P#
Link

Use case Keyword/Title Description

FR1 P1 All
Vehicle positioning and
timing data

In-Vehicle IoT Platform
must be able to receive
vehicle positioning and
timing data (e.g. latitude,
longitude, heading,
timestamp) from same
GNSS devices used by
existing vehicle AD system

FR2 P1 All Vehicle dynamic data

In-Vehicle IoT Platform
must be able to receive
vehicle dynamic data (e.g.
speed, yaw rate,
accelerations, etc..) from
intra-vehicle network

FR3 P1 All Vehicle static data

In-Vehicle IoT Platform
must be able to receive
vehicle static data (e.g.
vehicle length and width)
from intra-vehicle
network

FR4 P1 Platooning
Vehicle AD
functionalities related
data

In-vehicle IoT Platform
should be able to receive
data from Autonomous
Driving functionalities and
related status (e.g. Lane
Keeping function status,
ACC function status, Lane
Change function status,
etc..)

FR5 P2 All
ITS-G5 received data:
CAM/DENM

In-Vehicle Iot Platform
must be able to receive
CAM/DENM decoded
contents from received
ITS-G5 messages

FR6 P2 All
ITS-G5 received data:
SPaT/MAP

In-Vehicle Iot Platform
must be able to receive
SPaT/MAP decoded
contents from received
ITS-G5 messages

FR7 P2 All
Cellular LTE received
data for IoT App.

In-Vehicle IoT Platform
must be able to receive
data from communication
system, related with

50

ID#

P#
Link

Use case Keyword/Title Description

contents received from
IoT external services.

FR8 P2 All
Cellular LTE generated
data for IoT services

In-Vehicle Iot Platform
must be enabled to
provide /communicate
elaborated data to IoT
external services, through
communication system.

FR9 P3 All
IoT devices: output
data

In-Vehicle IoT Platform
must be able to receive
data from internal IoT
devices, installed inside
prototype vehicle.

FR10 P3 All IoT devices: input data

In-Vehicle IoT Platform
must be able to provide
data to IoT devices
installed inside prototype
vehicle

FR11 P3 All IoT devices: plug&play

In-Vehicle IoT Platform
must be able to integrate
heterogeneous IoT
devices into the
prototype, mantaining a
proper logical and
functional separation
between additional IoT
sensors itself and intra-
vehicle network (no
interference).

FR12 P1 AVP Unmanned mode

The In-Vehicle IoT
platform should be able
to decide when the driver
has left the vehicle (e.g.
reading CAN bus data
realted with "opened
doors" and "seat
occupance") and switch
to Unmanned Mode

FR13 P1 AVP Unmanned mode

The AD vehicle must
respond to control
commands transmitted by
the control centre
(emergency stop, take-
off)

FR14 P1 AVP Unmanned mode

The vehicle goes to a low
power mode when
arriving at the parking
place

FR15 P1 AVP Unmanned mode The control centre wakes

51

ID#

P#
Link

Use case Keyword/Title Description

up the vehicle to move to
the collect point

FR16 P3 AVP Unmanned mode
Driver validation: the
vehicle grants access to
authorised drivers

FR17 P2 Highway pilot Hazard detection

The In-Vehicle PF must be
able to receive hazard
warning information from
connected IoT
Infrastructure PF
(alterntive to DENM from
ITS-G5 channel, from
cloud connection)

FR18 P4

Highway pilot

Pothole analysis

The In-Vehicle PF must be
able to elaborate data
received from (ego)
vehicle and determine
pothole presence on the
road

FR19 P1

Highway pilot

Speed Limit adaptation

The In-Vehicle IoT PF
must be able to receive
feedback from AD vehicle
system, when vehicle
reacting to speed limits
modification.

FR20 P1

Highway pilot

Lane Following

The In-Vehicle IoT PF can
be informed when AD
vehicle is activating Lane
Following functionalities
(lateral control)

FR21 P1

Highway pilot

Lane Change

The In-Vehicle PF can be
informed when AD
vehicle is activating Lane
Change functionalities
(lateral control)

FR22 P2 Urban driving VRU detection

The In-vehicle PF can be
able to receive
information related with
VRU presence, generated
by IoT infrastructure PF
(alternative to
CAM/DENM from ITS-G5
channel, for long range).

FR23 P4

Urban driving

VRU data elaboration

The In-vehicle PF must be
able to elaborate VRU
position compared with
Ego-vehicle dynamic data,
to estimate the related
threats.

52

ID#

P#
Link

Use case Keyword/Title Description

FR24 P2

Urban driving

Traffic Light

The In-Vehicle PF can be
able to receive Signal
Phase information,
generated by IoT
infrastructure PF
(alternative to SPaT/MAP
from ITS-G5 channel, for
long range)

FR25 P2 AVP
Unmanned mode
indoor

In-Vehicle IoT Platform
must be able to provide
the vehicle identification
to be authorized at the
parking place

FR26 P2 AVP
Unmanned mode
indoor

The In-Vehicle IoT
platform should be able
to receive a detailed
layout of the parking
place and the location of
dynamic objects

FR27 P2 AVP
Unmanned mode
indoor

The In-Vehicle IoT
platform should be able
to provide the Position
related to a virtual
parking map

FR28 P2 AVP
Unmanned mode
indoor

The In-Vehicle IoT
platform should be able
to receive a Pedestrian
detection relative to a
virtual parking map

FR29 P2 AVP Sleep mode

The In-Vehicle IoT
platform should be able
to inform when switch to
Sleep mode.

FR30 P2 Highway Pilot Speed Limit adaptation

The ACC/AD vehicle must
acknowledge speed
limitation command
transmitted by the
control centre.

FR31 P1 Highway Pilot Speed Limit adaptation

The ACC/AD vehicle
should execute the speed
limitation command
transmitted by the
control centre.

FR32 P2 Highway Pilot Speed Limit adaptation

The ACC/AD vehicle
should acknowledge the
execution of the speed
limitation command
transmitted by the
control centre.

53

ID#

P#
Link

Use case Keyword/Title Description

FR33 P2 Highway Pilot
Safety Distance
adaptation

The ACC/AD vehicle must
acknowledge safety
distance command
transmitted by the
control centre.

FR34 P1 Highway Pilot
Safety Distance
adaptation

The ACC/AD vehicle
should execute the safety
distance command
transmitted by the
control centre.

FR35 P2 Highway Pilot
Safety Distance
adaptation

The ACC/AD vehicle
should acknowledge the
execution of the safety
distance command
transmitted by the
control centre.

FR36 P2 Highway Pilot
Takeover order (Auto
to Manual)

The ACC/AD vehicle must
acknowledge the
takeover command
transmitted by the
control centre.

FR37 P1 Highway Pilot
Takeover order (Auto
to Manual)

The ACC/AD vehicle
should execute the
takeover command
transmitted by the
control centre.

FR38 P2 Highway Pilot
Takeover order (Auto
to Manual)

The ACC/AD vehicle
should acknowledge the
execution of the takeover
command transmitted by
the control centre.

FR39 P2 Highway Pilot
Broadcast warning
about road hazard

The vehicle must be able
to broadcast over ITS G5 a
warning message about a
critical and relatively
certain Road Hazard
danger (ex: vehicle
stopped on the lane)

FR40 P4 All Service Based

The In-Vehicle IoT PF
should be service-based
to offer high flexibility
when new and advanced
functions need to be
added.

FR41 P4 All Remote Management

The In-Vehicle IoT PF, as
well as software
components (i.e. services
and applications) running
on the platform itself,

54

ID#

P#
Link

Use case Keyword/Title Description

should be able to be
remotely provisioned,
configured, updated,
monitored,
startup/shutdown.

FR42 P4 All Interoperability

The In-Vehicle IoT PF
should allow applications
to seamlessly work with
heterogeneous devices,
technologies and systems,
without the need of
extensive development
effort.

FR43 P4 All
Semantic
interoperability

The In-Vehicle IoT PF
should annotates raw
data with semantic
informations, enabling
mutual understanding of
interchanged information
among inner and external
devices and services.

FR44 P1 All World model

The IoT Vehicle platform
must be able to receive
world model related data
(e.g., objects detected,
road markings) coming
from vehicle internal
sensors, if available, with
the following general
measurement
information required by
sensor fusion algorithms:
confidence level,
desciption of sensor type,
timestamp.

FR45 P4 All World model

The sensor fusion
algorithm must be able to
process incoming data
from internal vehicle
sensors, IoT devices and
IoT cloud, to build a
coherent "World Model".

FR46 P1 Platooning World model

The IoT platform must
provide tracking
information (ID, speed,
acceleration, position) of
both front and rear
vehicles to the control
system in order to meet

55

ID#

P#
Link

Use case Keyword/Title Description

requirements of the CACC
system.

FR47 P1 Platooning World model

The IoT platform must
provide road model
information (road edge
or lane markings) to the
control system in order to
meet requirements of the
CACC system.

FR48 P2 All World model

The IoT platform must be
able to receive and share
world model related data
(e.g., objects detected,
road markings) coming
from IoT cloud services
with the following general
measurement
information required by
sensor fusion algorithms:
confidence level,
desciption of sensor type,
timestamp.

FR49 P2 All World model

The IoT platform should
be able to receive and
share shape description
of objects (e.g., bounding
box dimensions).

FR50 P2 Platooning CACC message

The IoT platform must be
able to receive and share
platooning management
information such as target
acceleration, time gap to
vehicle in front, controller
type (manual, ac, acc,
cacc) to the control
system in order to meet
requirements of the CACC
system.

FR51 P4 Platooning
Platooning IoT service
data

The IoT platform must be
able to receive and share
platooning IoT service
data such as request to
join, request to leave,
location of formation.

FR52 P1 All Vehicle Safety

The safety and time
critical information over
the onboard IoT platform
shall be clearly identified
and separated over a

56

ID#

P#
Link

Use case Keyword/Title Description

dedicated channel.

FR53 P1 All Vehicle Safety

The emergency stop
button shall disconnect
the prototype controllers
/ IoT platform, and
provide the manual
controls (back to the
driver)

FR54 P4 All UI connection

The IoT Platform should
be able to inform and
interact with the driver,
concerning specific events
notification or warnings

FR55 P2
Urban driving (funct.
rebalancing)

Probabilistic world
model

The In-vehicle PF can be
able to receive TU/e
lecturing scheduling
informaiton from the
TU/e websever (WiFi
connection).

FR56 P2
Urban driving (func.
rebalancing)

Probabilistic world
model

The In-vehicle PF is able
to receive weather
information from
internet.

 Table 5 – Non-Functional requirements

ID#

P# Link Use case Keyword/Title Description

NFR1 FR1 All
Vehicle Reference
Position

In-Vehicle dynamic data resolution:
Referecence Position latitude and
longitude [deg] (0,0000001 deg;
WGS84 co-ordinate system - see
CAM req.)

NFR2 FR1 All Vehicle Heading

In-Vehicle dynamic data resolution:
Reference Positiong Heading [deg]
(0,1 degree; with regards to the
WGS84 north - see CAM req.)

NFR3 FR1 All Vehicle TimeStamp

In-vehicle dynamic data resolution:
Reference timestamp as used to
define GenerationDeltaTime inside
CAM [ms]. Number of milliseconds
since 2004-01-01T00:00:00.000Z, as
specified in ISO 8601; +/- 1 ms

NFR4 FR2 All Vehicle Speed
In-Vehicle dynamic data resolution:
speed [m/s] (0,01 m/s; range: [0;
163,82] m/s - see CAM req.)

NFR5 FR2 All Reverse Gear
In-Vehicle dynamic data resolution:
reverse gear status range [0;1]

57

ID#

P# Link Use case Keyword/Title Description

NFR6 FR2 All
Vehicle Longitudinal
& Lateral
Accelerations

In-Vehicle dynamic data resolution:
longitudinal and lateral accelerations
[m/s^2] corresponds to the vehicle
coordinate system as specified in ISO
8855 (0,1 m/s^2 ; negative values for
longitudinal acc. indicates vehicle is
braking; negative values for lateral
acc. indicates the vehicle is
accelerating right; range: [-16; +16]
m/s^2 - see CAM req.)

NFR7 FR2 All Vehicle YawRate

In-Vehicle dynamic data resolution:
yaw rate [deg/s] corresponds to the
vehicle coordinate system as
specified in ISO 8855 (0,01 deg/s;
negative values indicates that the
vehicle is rotating to the right;
range:[-327,66; +327,66] - see CAM
req.)

NFR8 FR2 All
Vehicle Vertical
Acceleration

In-Vehicle dynamic data resolution:
vertical accelerations [m/s^2]
corresponds to the vehicle
coordinate system as specified in ISO
8855 (0,1 m/s^2; negative values
indicates that vehicle is acceleratind
downwards; range: [-16;+16] m/s^2 -
see CAM req.)

NFR9 FR2 All Brake Pedal Status
In-Vehicle dynamic data resolution:
brake pedal status range [0;1]

NFR10 FR2 All Gas Pedal Position
In-Vehicle dynammmic data
resolution: gas pedal position [%]

NFR11 FR2 All
Emergency Brake (or
ABS) Status

In-Vehicle dynamic data resolution:
Emergency Brake status range [0;1]

NFR12 FR2 All Cruise Control Status
In-Vehicle dynamic data resolution:
Cruise Control Status range [0;1]

NFR13 FR2 All
Adaptive Cruise
Control Status

In-Vehicle dynamic data resolution:
Adaptive Cruise Control Status range
[0;1]

NFR14 FR2 All Speed Limiter Status
In-Vehicle dynamic data resolution:
Speed Limiter Status range [0;1]

NFR15 FR2 All
Steering Wheel
Angle

In-Vehicle dynamic data resolution:
Steering Wheel Angle [deg] (1,5 deg;
negative values indicates that vehicle
is turning on right; range:[-766,5;
+766,5] degree - see CAM req.)

NFR16 FR2 All Low Beam Status
In-Vehicle dynamic data resolution:
Low Beam Lights Status range [0;1]

NFR17 FR2 All High Beam Status
In-Vehicle dynamic data resolution:
High Beam Lights Status range [0;1]

58

ID#

P# Link Use case Keyword/Title Description

NFR18 FR2 All
Left Turn Signal
Status

In-Vehicle dynamic data resolution:
Left Turn Lights Status range [0;1]

NFR19 FR2 All
Right Turn Signal
Status

In-Vehicle dynamic data resolution:
Right Turn Lights Status range [0;1]

NFR20 FR2 All
Day Time Running
Lights Status

In-Vehicle dynamic data resolution:
Day Time Running Lights Status range
[0;1]

NFR21 FR2 All Reverse Lights Status
In-Vehicle dynamic data resolution:
Reverse Lights Status range [0;1]

NFR22 FR2 All Fog Lights Status
In-Vehicle dynamic data resolution:
Fog Lights Status range [0;1]

NFR23 FR2 All Park Lights Status
In-Vehicle dynamic data resolution:
Park Lights Status range [0;1]

NFR24 FR2 All Path History
A path with a set of path points. It
may contain up to 40 path points.
(see CAM req.)

NFR25 FR2 All Path Point

[In relation with Path Hystory] It
defines a waypoint position within a
path, and is composed by two
parameters: (i) path position as a
delta from a reference position point;
(ii) path delta time as a travel time
that separates the point from the
reference point (see CAM req.)

NFR26 FR3 All Vehicle Length
In-Vehicle static data resolution:
length [m] (0,1 m; range: [+1; +102,2]
meters - see CAM req.)

NFR27 FR3 All Vehicle Width
In-Vehicle static data resolution:
width [m] (0,1 m; range: [+1; +6,1]
meters - see CAM req.)

NFR28 FR4
Highway

pilot
Lane Keeping status

In-Vehicle AD function status: Lane
Keeping [Idle, torque overlay
activated, Not active, …

NFR29 FR4
Highway

pilot
ACC status

In-Vehicle AD function status: ACC
[Idle, target speed activated, Not
active, …]

NFR30 FR5 All
CAM/DENM
reception freq.

In-Vehicle IoT PF: must be able to
receive CAM/DENM contents
generated by neighbours, at same
freq. of data received from 802.11p
interface

NFR31 FR5
Urban
driving

SpaT/MAP reception
freq.

In-Vehicle IoT PF: must be able to
receive Spat/MAP contents
generated by infrastructures, at same
freq. of data received from 802.11p
interface

NFR32 FR5, FR6 All
ITS-G5 security &
privacy

In-Vehicle IoT platform must/should
ensure for ITS-G5 comm. a level of

59

ID#

P# Link Use case Keyword/Title Description

security compliant with last ETSI
requirements on cybersecurity

NFR33 FR7, FR8 All
Cellular LTE security
& privacy

In-Vehicle IoT platform must/should
ensure for ITS-G5 comm. a level of
security compliant with last ETSI
requirements on cybersecurity

NFR34 FR7, FR8 AVP Unmanned mode
During unmanned mode the vehicle
has to have uninterrupted connection
to a control centre

NFR35 FR7 Urban
Traffic light
information

Traffic Light status/phase
information: [traffic light ID; traffic
light absolute position; interested
road and direction; current
status/phase, next status/phase, time
to change status/phase,
approximation trace]

NFR36 FR7, FR8 All VRU detection

VRU related information: [absolute
position lat;lon - same resolution as
for vehicle positioning; type of VRU;
estimated speed; estimated
direction; estimated acceleration]

NFR37 FR7, FR8 Urban traffic jam events

Traffic Jam information: [interested
road/lane; interested direction;
estimated starting point; estimated
ending point]

NFR38 FR7, FR8 Urban
road work warning
events

Road Works information: [interested
road/lane; interested direction;
estimated starting point; estimated
ending point]

NFR39 FR7, FR8 Urban Weather events

Weather information: [interested
road/lane; interested direction;
estimated starting point; estimated
ending point]
CTAG: propose to add "Weather
type" (fog, wind, snow ….) and
change start/end point by location
and radius

NFR40 FR42 Platooning
Tracking
information: position

Cartesian position (x and y in meters)
with respect to the center point of
the object. Resolution: 1 centimeter.
The accuracy must be at least 0.5
meter as minimum requirement.

NFR41 FR42 Platooning
Tracking
information: speed

Cartesian velocity (x and y in m/s).
Resolution: 0.01 m/s

NFR42 FR42 Platooning
Tracking
information:
acceleration

Cartesian acceleration (x and y in
m/s^2). Resolution: 0.01 m/s^2

NFR43 FR42 Platooning Tracking Age of measurements in seconds.

60

ID#

P# Link Use case Keyword/Title Description

information: age Resolution: 0.001 s

NFR44 FR42 Platooning
Tracking
information:
identifier

Unique identifier of tracked object as
integer [0, MAX_INTEGER]

NFR45 FR43 Platooning
Road model: lane
polynomial

Lane markings of a road is
represented with a third degree
polynomial: y = c0 + c1 * x + c2 * x * x
+ c3 * x * x * x, where c0 and c1 are
determined by the pose, c2 is the
second derivative [1/m], c3 is the
third derivative [1/m^2].

NFR46 FR43 Platooning Road model: lane ID
Lane ID corresponding to the
polynomial as defined above as
integer [0, MAX_INTEGER]

NFR47 FR46 Platooning
CACC message:
sending rate

CACC messages specific for
platooning must be sent at 25 Hz

NFR48 FR46 Platooning
CACC message:
controller type

Controller type: manual = 0, cc = 1,
acc = 2, cacc = 3

NFR49 FR46 Platooning
CACC message:
response delay

Response time constant. Resolution
0.01 seconds. Unavailable = 1001

NFR50 FR46 Platooning
CACC message:
target longitudinal
acceleration

Target longitudinal acceleration.
Resolution: 0.01 m/s^2. Unavailable
= 1001

NFR51 FR46 Platooning
CACC message: time
gap

Time gap with respect to front
vehicle. Resolution: 0.1 seconds.
Unavailable = 361

NFR52 FR46 Platooning
CACC message:
cruise speed

Cruise vehicle speed. Resolution: 1
cm/s. Unavailable = 5001

NFR53 FR46 Platooning
CACC message: rear
axle location

Rear axle location of front vehicle.
Resolution: 1 cm

61

4 Specifications

This chapter starts with a first section describing different IoT technologies, that are used by the
AUTOPILOT test sites, as specified in the second section

4.1 Survey of IoT technologies

The In-Vehicle IoT Platfom is composed by a set of software and hardware elements that are related
to IoT world, and into this “world” the available combinations are various. In the different Test Sites
of the AUTOPILOT project, can be possible to follow different strategies to obtain an IoT Vehicle
Platform. This section provides a description of State of Art of different technologies in relation with
the core functionalities of an IoT Vehicle Platform:

 Remote Management
 Context Awareness
 Data Management
 Security and Privacy
 Communication Interoperability
 Syntactic and Semantic Interoperability
 Application container or runtime environment

4.1.1 Remote Management

Remote Management is the ability to remotely provision, configure, update, monitor,
startup/shutdown the In-Vehicle IoT platform as well as software components (i.e. services and
applications) running on the platform itself.

Remote Management is also the ability to create simplified and optimized network driven by remote
device and application lifecycle management (Application distribution and lifecycle management;
Real-time device monitoring; Service management and diagnostics).

OSGi Remote Management Tools,[14] e.g. used in the In-vehicle IoT platform of Livorno Pilot Site,
introduce idea of remote monitoring and controlling of external application based on OSGi platform.
The crucial thing in OSGi is that it is a dynamic module system for Java. It allows to install, uninstall
and update all modules without restarting or even stopping application for these operations. At once
it is possible to think that OSGi is an ideal platform for each application server but it can find
implementation in other environments (e.g., handheld devices, IT managed environments). In
Eclipse community OSGi is very important because the whole Eclipse platform is based on it.

Remote services are accessed in an entirely transparent way. All that a service provider framework
has to do is registering a service for remote access. Subsequently, other peers can connect to the
service provider peer and get access to the service. For every remote service, a local proxy bundle is
generated that registers the same service. Local service clients can hence access the remote service
in the same way and without regarding distribution.

Additionally, Remote Services for OSGi can interact with the EventAdmin service. Frameworks
receive all events from connected peers that match one of their EventHandler subscriptions. Even
though Remote Services for OSGi is a sophisticated middleware for OSGi frameworks, it uses a very
efficient network protocol and has a small footprint. This makes it ideal for small and embedded
devices with limited memory and network bandwidth. The service runs on every OSGi-compliant
environment.

Remote Services for OSGi has been tested with Eclipse Equinox, Knopflerfish, and Oscar / Apache
Felix, as well as with our own lightweight OSGi implementation Concierge.

62

4.1.2 Context Awareness

The context awareness will be of great support to process and store the big data, and to make their
interpretation easier.

Context-awareness is a key requirement in building adaptive applications and services and in
annotating values from sensed data. The In-Vehicle IoT platform needs to be aware of the context
through a sort of “world model”, using this for development of effective services. Here we give the
example of the context awareness in TUEIN/TomTom vehicle in the Dutch pilot.

Online Horizon system

Vehicle-based applications, like driver assistance (ADAS) and automated driving (AD), need an up-to-
date map, for the road ahead and for its surroundings.

We can call this system the Online Horizon System to reflect the idea that the information is used to
maintain a model of what is to be expected when the vehicle is moving forward.3 Data in the online
horizon typically includes:

1. HD map information, which consists of several map layers, such as lanes, dividers and

RoadDNA, and traffic sign locations which are typically used for AD applications, or

2. Live map information, which includes more dynamic aspects, such as traffic jams, hazards

and weather.

Figure 37 – Online horizon service, example from TomTom

The sensors in the car (camera, radar, LiDAR) are typically used for localization and at the same time
the sensors also can generate data for keeping the map up-to-date. That is called map observation
creation here. The local observations of the environment are collected in the cloud in a gateway,
combined with other sources and then used in the production of both the HD Map as well as the Live

3
 Note that the use of “horizon” in this sense is wider than that in ADASIS. This horizon is used to augment or

validate the environmental model the vehicle creates with its own sensors.

63

Map. The Live Map contains temporary hazards like the tail of a traffic jam, temporarily closed lanes,
accidents, etc.

World Information on Robot Environments (WIRE)
World Information on Robot Environments (WIRE) is a Robot Operating System (ROS) based
probabilistic multiple hypothesis anchoring to create and maintain a semantically rich world model
using probabilistic anchoring. Multiple hypothesis tracking-based data association is included to be
able to deal with ambiguous scenarios. Multiple model tracking is included to be able to easily
incorporate different kinds of prior knowledge.

4.1.3 Data Management

Data is uploaded in real-time or at the conclusion of each trip. Data set examples include vehicle
speed, GPS location, and exception events. The vehicle devices can communicate using MQTT, an
industry-standard communications protocol. Each device must be mutually authenticated prior to
exchanging data and must be associated with a specific VIN. Communication is two-way between
the telemetry devices, because they both supply data and can accept messages.

Is also the ability to filter, analyze, and correlate vehicle sensor data and take action on the large
amount of data generated. I.e. Real-time situational awareness, faster decisions, and immediate
actions locally at the machine level and the enterprise back end; Agnostic of event sources,
destination or underlying communication layer; Tooling and event flow monitoring

Data refer to sensed data or any information of interest to IoT applications. An In-vehicle IoT
platform needs to provide data management services to applications, including data acquisition,
data processing, data fusion at the “edge” and data local storage capabilities to deal with network
latency and reliability. The In-Vehicle IoT should handle events typically with not real-time
constraints. The platform could have analytics capabilities and should be connected to the UI to
interact with the driver.

Data Fusion Techniques

To its core, data fusion is the process of combining different data sources to generate a better
information to improve decision. In an automotive context, vehicles have embedded sensors that
generate data to ADAS (Advanced Driver Assistance Systems). In AUTOPILOT scope, where IoT data
will enhanced and enable AD, data will be sent to and received from a back-end platform or an IoT
platform.

Initially data fusion is needed to aggregate different data sources (from different sensors) in order to
generate better information or to unify the same information, viewed by different sensors. With IoT
data, vehicles need to communicate with a back-end platform/IoT platform. Data fusion will play an
important role in such communications. Indeed, it is likely that bandwidth in-between vehicle and
cloud platform will be limited and as such, the vehicle will need to ‘select’ the data to send. In the
idea, data should be fused and also reduced in volume.

There are numerous combination of data fusion, e.g. GPS position data could be correlated with
Road Sign Unit or a connected pedestrian. Each of these combinations is unique in terms of data
format that could depend on the technologies, the use case or the vehicle.

In this perspective, providing a specific data fusion technique could be possible but it would be only
usable in a specific case (i.e. for the specific data format/use case/vehicle). To tackle this issue, the
idea behind this section is to provide some guidance to answer the question of the data fusion.

In a first step, a functional data classification should be done in order to evaluate what are the data
available, the sources, format and the quality of the data. Based on this preliminary analysis, a
common format or data structure should be chosen. Data transformation on each dataset should
then be computed in order to transform them into the target format/data structure so that data

64

fusion can be done. In this step of the process, data should be ready to be fused.

4.1.4 Security and Privacy

Security needs to be implemented for both devices and applications. Features such as
authentication, encryption, and authorization need to be part of each component of the
architecture. Furthermore, every block of In-vehicle IoT platform which uses personal information,
needs to preserve the owner’s privacy. Developing componentized applications according to
supported security standards means that will be less likely to require new security measures as
hardware platform changes.

In vehicle data and devices are segregated and protected from external threat sources.

All on board devices cooperate to protect sensitive data and access to key safety related devices.

Data is protected both during vehicle travel time and at rest, both on storage and in transit. Each in-
vehicle device is classified according to standards in course of identification in D1.9 so that its
security requirements are defined in accordance to the outcomes of the risk analysis contained into
the same document.

DoS (Denial of Service) attacks against in-vehicle devices are promptly detected and countered by
autonomous systems that have the primary purpose of protecting the vehicle, passengers and traffic
safety.

In vehicle devices also cooperate with infrastructure devices to protect user privacy in the cloud, for
example by means of anonymized data and usage of pseudonyms.

A mechanism exists that allows critical vehicle components to be checked for genuineness
/authenticity. Tamper proof techniques allow vehicle components to be secure even while not
assembled into the vehicle.

4.1.5 Communication Interoperability

Communication interoperability should allow the platform to transfer information seamlessly among
sensors and actuators networks, physical devices and sub-systems which use different transport
protocols. Hereafter, examples of protocols that can be used for communication interoperability are
provided. Each prototype leader has made its choices, for testing purposes, addressing
interoperability within the vehicle components and between the vehicle and the IoT infrastructure.

LCM - Lightweight Communications and Marshalling

Lightweight Communications and Marshalling (LCM) is a set of libraries and tools that enable
message passing and data marshalling (i.e. encoding and decoding in efficient way, and
rearrangement/assembling of message addressed for group of interested recipients), simplifying the
development of low-latency messages and targeted to real-time robotics applications v[23].

The LCM main components are:

 data type specification language

 message passing system

 logging/playback tools

 real time analysis tools

LCM implements an efficient broadcasting mechanism using UDP Multicast, with a “push”-based
publish/subscribe model that offer low-latency performances, is supported by various platforms (e.g.
GNU/Linux, OS X, Win, POSIX) and by many of the most used programming languages (e.g. C, C++,
Java, Python, etc..). Thanks to the various API provided by LCM [15], it is possible to enable

65

messages exchange, with a minimized effort for the configuration of involved systems or platforms
and obtaining an efficient inter-process communication. The type specification language that can
be used to create type definitions are independent of used platform and programming language.
The LCM code generation tool is used to automatically generate language-specific bindings that
provide representations of the message in a data structure.

LCM is distinctive from other approaches also for the offered debugging and analysis system, with
tools for recording data (i.e. LCM-logger), for deep inspection of all messages captured from a
network (i.e. LCM-spy) and the possibility to replay (i.e. LCM-logplayer) and analyze with graphical
features, data captured from a test session.

ZeroMQ

ZeroMQ (or ØMQ) [17] is a messaging system, or "message-oriented middleware", used in
environments as diverse as financial services, game development, embedded systems, academic
research and aerospace.

ZeroMQ is developed by a large community of contributors, founded by iMatix, which holds the
domain name and trademarks. There are third-party bindings for many popular programming
languages.

ZeroMQ looks like an embeddable networking library but acts like a concurrency framework. It gives
sockets that carry atomic messages across various transports like in-process, inter-process, TCP, and
multicast. It is possible to connect sockets N-to-N with patterns like fan-out, pub-sub, task
distribution, and request-reply. It's fast enough to be the fabric for clustered products. Its
asynchronous I/O model gives scalable multicore applications, built as asynchronous message-
processing tasks. It has a score of language APIs and runs on most operating systems.

Advanced Message Queuing Protocol (AMQP)

The enterprise-level Advanced Message Queuing Protocol (AMQP), developed by the OASIS open
standards consortium, is an open standard application layer protocol for message-oriented
middleware. It provides a platform-agnostic method for ensuring information is safely transported
between applications, among organizations, within mobile infrastructures, and across the Cloud.
AMQP is used in areas as varied as financial front office trading, ocean observation, transportation,
smart grid, computer-generated animation, and online gaming. As the name implies, it provides a
wide range of features related to messaging, including reliable queuing, topic-based publish-and-
subscribe messaging, flexible routing, transactions, and security. AMQP exchanges route messages
directly—in fanout form, by topic, and also based on headers. There are Cloud-hosted offerings of
AMQP, and it is embedded in virtualization infrastructure.

To enable complete interoperability for messaging middleware requires that both the networking
protocol and the semantics of the server-side services are sufficiently specified. AMQP, therefore,
defines both the network protocol and the server-side services through:

- A defined set of messaging capabilities called the "Advanced Message Queuing
Protocol Model" (AMQ model). The AMQ model consists of a set of components that route
and store messages within the broker service, plus a set of rules for wiring these
components together.

- A network wire-level protocol, AMQP, that lets client applications talk to the server and
interact with the AMQ model it implements.

One can partially imply the semantics of the server from the AMQP protocol specifications but we
believe that an explicit description of these semantics helps the understanding of the protocol.

There are three major pieces specified in the scope of AMQP 1.0. These define the networking
protocol, a representation for message envelope data and the basic semantics of broker services.

66

Figure 38 – AMQP Architecture

The AMQP Network Protocol

The AMQP Network protocol [18] defines:

 A peer to peer protocol; though normally in AMQP one peer is playing the role of a client
application and the other peer is playing the role of trusted message routing and delivery
service, or broker.

 How to connect to services, including a method for failing over connections to alternative
services.

 A mechanism to enable peers to discover one another’s capabilities.
 Comprehensive security mechanisms, including SSL and Kerberos for seamless end-to-end

confidentiality.
 How to multiplex a TCP/IP connection in order that multiple conversations may happen over

one TCP/IP connection (simplifies firewall management).
 How to address a source of messages with the network peer, and to specify which messages

are of interest.
 The lifecycle of a message through fetching, processing, and acknowledgement. AMQP

makes it very clear when responsibility for a message is transferred from one peer to
another thereby enhancing reliability.

 How to enhance performance, if desired, by pre-fetching messages across the network ready
for the client to process without delay.

 A way of processing batches of messages within a transaction.
 A mechanism to allow a complete message transfer from login to logout in one network

packet for lightweight applications.
 Very capable flow control, which enables consumers of messages to slow producers to a

manageable speed, and which enable different workloads to proceed in parallel at different
rates over one connection.

 Mechanisms for resuming message transfers when connections are lost and re-established;
for example in the event of service failover or intermittent connectivity.

Message Representation

The applications based on the AMQP protocol do not exchange data speaking the framing

67

“language”, but rather it’s the messaging layer built on top of it that provides messaging capabilities.

This layer defines a well-known structure of the message composed of two main parts:

 Bare message: it’s an immutable part from the sender to the receiver. No one intermediary
can change its content.

 Annotated message: it consists of the previous bare message plus some annotations that
can be used and changed by intermediaries between sender and receiver The bare message
contains the body and two types of collections: the first one is for system properties that are
standard and well-defined by the AMQP specification; the second one is for application
specific properties (also named user properties) that can be added and changed by the
application.

Figure 39 – AMQP Message representation

The AMQP 1.0 Type System and message encoding facilities provide a portable encoding for
messages to meet this need.

Normally, this encoding is only used to add routing properties to the “envelope” of the message; the
contents inside the envelope are transported untouched. Applications will likely use XML, JSON or
similar encodings in their message content. Optionally, and application could choose to use AMQP
encoding for message content too, but this is entirely optional.

Broker Services

The value of using message brokers is that a trusted intermediary designed for the purpose handles
the complexities of message queuing, routing and delivery. That intermediary is the message
broker.

AMQP defines the minimum set of requirements expected of a message broker, and where there are
frequently used more advanced facilities; it specifies how those facilities are to be exposed to
clients.

The goal of AMQP is to enable applications to send messages via the broker services; these lower
level concepts are necessary but not the goal in themselves.

MQTT (used by Links)

To start with this specification, we need to introduce the consortium OASIS which is the Open
Advancing Standard for the Information Society [19]. This consortium helps the community to reach
an agreement on Standards as which we will use to define our in-Vehicle IoT platform (VIP).

The Open Charge Point Protocol (OCPP [20]) has been developed by the company, Chargerlink, Inc.

This protocol uses Message Queue Telemetry Transport (MQTT [21]) from IBM and Protocol Buffers

(ProtoBuf [22]) from Google.

MQTT is a Client Server publish/subscribe messaging transport protocol. It is lightweight, open,

simple, and designed so as to be easy to implement. These characteristics make it ideal for use in

many situations, including constrained environments such as for communication in Machine to

Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required

and/or network bandwidth is at a premium.

68

The protocol runs over TCP/IP, or over other network protocols that provide ordered, lossless,

bidirectional connections. Its features include:

 Use of the publish/subscribe message pattern which provides one-to-many message

distribution and decoupling of applications.

 A messaging transport that is agnostic to the content of the payload.

 Three qualities of service for message delivery:

o "At most once", where messages are delivered according to the best efforts of

the operating environment. Message loss can occur. This level could be used, for

example, with ambient sensor data where it does not matter if an individual

reading is lost as the next one will be published soon after.

o "At least once", where messages are assured to arrive but duplicates can occur.

o "Exactly once", where message are assured to arrive exactly once. This level

could be used, for example, with billing systems where duplicate or lost

messages could lead to incorrect charges being applied.

 A small transport overhead and protocol exchanges minimized to reduce network traffic.

 A mechanism to notify interested parties when an abnormal disconnection occurs.

Figure 40 – MQTT description scheme

Data Distribution Service (DDS)

The Data Distribution Service (DDS™ [23]) used in Tampere and Vigo Pilo Sites, is a middleware
protocol and API standard for data-centric connectivity from the Object Management Group®
(OMG®). It integrates the components of a system together, providing low-latency data connectivity,
extreme reliability, and a scalable architecture that business and mission-critical Internet of Things
(IoT) applications need. The standard is used in applications such as smartphone operating systems,
transportation systems and vehicles, software-defined radio, and by healthcare providers.

DDS is uniquely data centric (which is ideal for the Internet of Things), so ensures that all messages
include the contextual information an application needs to understand the data it receives.

Applications communicate by publishing and subscribing to Topics identified by their Topic name.
Subscriptions can specify time and content filters and get only a subset of the data being published
on the Topic. Different DDS Domains are completely independent from each other. There is no data-
sharing across DDS domains.

https://en.wikipedia.org/wiki/Software-defined_radio

69

The essence of data centricity is that DDS knows what data it stores and controls how to share that
data.

Figure 41 – DDS Architecture

Protocol Buffers (used by Links)

Protocol Buffers [22], used by Links in the Italian Test Site, is a method of serializing structured data.
It is useful in developing programs to communicate. The method involves an interface description
language that describes the structure of some data and a program that generates source code from
that description for generating or parsing a stream of bytes that represents the structured data. The
design goals for Protocol Buffers emphasized simplicity and performance. In particular, it was
designed to be smaller and faster than XML.

Protocol Buffers is widely used at Google for storing and interchanging all kinds of structured
information. The method serves as a basis for a custom remote procedure call (RPC) system that is
used for nearly all inter-machine communication at Google.

A software developer defines data structures (called messages) and services in a proto definition file
(.proto) and compiles it with protoc. This compilation generates code that can be invoked by a
sender or recipient of these data structures.

CoAP / 6LoWPAN (used by LINKS)

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with
constrained nodes and constrained networks in the Internet of Things.

The protocol is designed for machine-to-machine (M2M) applications such as smart energy and
building automation.

Like HTTP, CoAP is based on the wildly successful REST model: Servers make resources available
under a URL, and clients access these resources using methods such as GET, PUT, POST, and DELETE.
Since HTTP and CoAP share the REST model, they can easily be connected using application-agnostic
cross-protocol proxies. A Web client may not even notice that it just accessed a sensor resource.

CoAP can also carry different types of payloads, and can identify which payload type is being used.
CoAP integrates with XML, JSON, CBOR, or any data format of your choice.

CoAP is designed to use minimal resources, both on the device and on the network. Instead of a
complex transport stack, it gets by with UDP on IP. A 4-byte fixed header and a compact encoding of

70

options enables small messages that causes no or little fragmentation on the link layer. Many servers
can operate in a completely stateless fashion.

The 6LoWPAN standard (RFC 4944) has been defined by IETF to adapt IPv6 communication on top of
IEEE 802.15.4 networks. 6LoWPAN refers to IPv6 over Low Power Wireless Personal Area Networks.
It enables IPv6 packets communication over low power and low rate IEEE 802.15.4 links and assures
interoperability with other IP devices. 6LowPAN devices can communicate directly with other IP-
enabled devices.

IP for Smart Objects (IPSO) Alliance is promoting the use of 6LowPAN and embedded IP solutions in
smart objects. 6LoWPAN provides an adaptation layer, new packet format, and address
management to enable such devices to have all the benefits of IP communication and management.
Since IPv6 packet sizes are much larger than the frame size of IEEE 802.15.4, the adaptation layer is
introduced between MAC and the network layers to optimize IPv6 over IEEE 802.15.4. The
adaptation layer provides mechanisms for IPv6 packet header compression, fragmentation and
reassembly allowing IPv6 packets transmission over IEEE 802.15.4 links.

Figure 42 – 6LoWPAN integration

The fundamental difference between 6LowPAN and Zigbee is the IP interoperability of the first.
6LowPAN devices are capable of communication with other IP-enabled devices whereas Zigbee node
needs an 802.15.4/IP gateway to interact with an IP network. The decision to select one standard
versus another should be determined by the target application. For an application in which there is
no need to interface with IP devices or the packet size is small, it is not necessary to implement
6LowPAN, which performs fragmentation [24].

Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) [25] is considered as an attractive technology for WSN applications
demanding higher data rates, but short range. BLE technology enables new low-cost Bluetooth
Smart devices to operate for months or years on tiny, coin-cell batteries. Potential markets for BLE-
based devices include healthcare, sports and fitness, security, and home entertainment. BLE

71

operates in the same 2.45 GHz ISM band as classic Bluetooth, but uses a different set of channels.
Instead of Bluetooth’s 1-MHz wide 79 channels, BLE has 2-MHz wide 40 channels. As compared to
classic Bluetooth, BLE is intended to provide considerably reduced power consumption and lower
cost, with enhanced communication range. BLE allows 1 Mbps data rates with 200 m range and has
two implementation alternatives; single-mode and dual-mode. Single-mode BLE devices support
only new BLE connections, whereas dual-mode devices support both classic Bluetooth as well as new
BLE connections and have backward-compatibility.

Zigbee

ZigBee is a wireless technology developed as an open global standard to address the unique needs of
low-cost, low-power wireless M2M networks. The ZigBee standard operates on the IEEE 802.15.4
physical radio specification and operates in unlicensed bands including 2.4 GHz, 900 MHz and 868
MHz.

The 802.15.4 specification upon which the ZigBee stack operates gained ratification by the Institute
of Electrical and Electronics Engineers (IEEE) in 2003. The specification is a packet-based radio
protocol intended for low-cost, battery-operated devices. The protocol allows devices to
communicate in a variety of network topologies and can have battery life lasting several years. The
ZigBee protocol is designed to provide an easy-to-use wireless data solution characterized by secure,
reliable wireless network architectures, also to communicate data through hostile RF environments
that are common in commercial and industrial applications.

ZigBee enables broad-based deployment of wireless networks with low-cost, low-power solutions. It
provides the ability to run for years on inexpensive batteries for a host of monitoring and control
applications. Smart energy/smart grid, AMR (Automatic Meter Reading), lighting controls, building
automation systems, tank monitoring, HVAC control, medical devices and fleet applications are just
some of the many spaces where ZigBee technology is making significant advancements.

4.1.6 Syntactic and Semantic Interoperability

Syntactic interoperation should allow the harmonization of formatting and encoding structures of
any exchanged information or service.

Semantic interoperability refers to the meaning of information or services, and should enable
mutual understanding of interchanged information among the set of devices and services connected
to the platform.

In this subsection, we summarize the interfaces and common data models of FIWARE, oneM2M, and
the Watson IoT Platform. Moreover, we describe their interworking architecture. The interfaces and
the data models can also be found in more detail in D1.3 [7].

FIWARE: FIWARE focuses on a common data model and powerful interfaces for searching and
finding information in IoT. FIWARE IoT Platform is based on the OMA Next Generation Service
Interface (NGSI) data model as the common information model of IoT-based systems and the
protocol for communication. The two interfaces of NGSI data model, NGSI-9 and NGSI-10 are briefly
described below. Both NGSI-9 and NGSI-10 support JSON and/or XML formats (HTTP-based).

NGSI9: it is used to manage the availability of context entity. A system component can register the
availability status of context information, and later on the other system component can issue either
discover or subscribe messages to find out the registered new context information. Detailed
specifications can be found in [26].

NGSI10: it is used to enable the context data transfer between data producers and data consumers.
NGSI10 has query, update, subscribe and notify context operations for providing context values. A
context broker is necessary for establishing data flow between different resources as well as
consumers or providers. Detailed specifications can be found in [27]

72

oneM2M: In oneM2M, a reference point consists of one or more interfaces of any kind. The
following reference points are supported by the Common Services Entity (CSE) (information included
from oneM2M technical architecture document [28]; these reference points are also included in
D1.3).

Mca Reference Point: Communication flows between an Application Entity (AE) and a Common
Services Entity (CSE) cross the Mca reference point. These flows enable the AE to use the services
supported by the CSE, and for the CSE to communicate with the AE.

Mcc Reference Point: Communication flows between two Common Services Entities (CSEs) cross the
Mcc reference point. These flows enable a CSE to use the services supported by another CSE.

Mcn Reference Point: Communication flows between a Common Services Entity (CSE) and the
Network Services Entity (NSE) cross the Mcn reference point. These flows enable a CSE to use the
supported services (other than transport and connectivity services) provided by the NSE.

Mcc' Reference Point: Communication flows between two Common Services Entities (CSEs) in
Infrastructure Nodes (IN) that are oneM2M compliant and that resides in different M2M SP domains
cross the Mcc' reference point. These flows enable a CSE of an IN residing in the Infrastructure
Domain of an M2M Service Provider to communicate with a CSE of another IN residing in the
Infrastructure Domain of another M2M Service Provider to use its supported services, and vice
versa. Mcc' extends the reachability of services offered over the Mcc reference point, or a subset
thereof. The trigger for these communication flows may be initiated elsewhere in the oneM2M
network.

Watson IoT Platform: The information related to Watson IoT Platform interfaces and data models
can also be found in AUTOPILOT D1.3. Watson IoT Platform is a pub/sub broker that supports the
MQTT protocol for publishing and subscribing to device data.

In Watson IoT Platform, devices publish data using events. The device controls the content of the
event and assigns a name for each event that is sent. When an event is received by the Watson IoT
Platform from a device, the credentials of the connection on which the event was received are used
to determine from which device the event was sent. This architecture prevents a device from
impersonating another device.

Connecting Devices to Watson IoT Platform

Watson IoT Platform provides a HTTP API and an MQTT messaging interface. Typically, the HTTP API
is used for registering and managing devices, publishing events and retrieving data. The MQTT
interface allows devices to publish and subscribe to events.

A device must be registered with an organization before it can connect to Watson IoT Platform.
Registered devices identify themselves to the Watson IoT Platform with a unique device identifier,
for example the MAC address, and an authentication token that is accepted for that device only.

MQTT is the primary protocol that devices and applications use to communicate with the IBM
Watson IoT Platform.

oneM2M, FIWARE and Watson IoT interworking

Several interworking components such as the Semantic Mediation Gateway (SMG) and oneM2M
connectors have been already defined to interface oneM2M, FIWARE and Watson IoT to facilitate
system architecture extensibility, offer maximum flexibility to high level applications, and avoid
vendor lock-in.

Semantic Mediation Gateway (SMG) is a component which has the ability to dynamically discover
semantically annotated information in the oneM2M system [29].

73

The semantic annotation may be attached to the oneM2M container resource that contains sensor
readings as content instances. SMG subscribes to the sensor readings and whenever a new sensor
reading becomes available, it uses its value and meta information together with the semantic
annotation to create the NGSI data structure that is used to update a NGSI-based FIWARE Generic
Enabler (GE), e.g. the Orion Context Broker or the Aeron IoT Broker.

Interworking Proxy Entity (IPE) is a component that can convert and integrate non-oneM2M devices
and platforms (e.g., Watson IoT) to oneM2M standard. It enables seamless communication
(bidirectional) between the interworking entities independently of the underlying technologies.

The following figure (Figure 43) illustrates the interworking between the three IoT Platform
(oneM2M, FIWARE, Watson IoT Platform) with the two components SMG and IPE. Applications can
operate on top of the FIWARE or Watson IoT Platform based on NGSI or Watson data models.
Moreover, they can directly operate using MCA of the oneM2M platform.

Figure 43 – Interworking through SMG and IPE

4.1.7 Application container or runtime environment

Java OSGI (Used by LINKS)

The OSGi Alliance [30] is the promoting organization founded in 1999 by Ericsson, IBM and Oracle
(afterwards extended with other members) that provided the first set of specifications to define a
framework – logic software architectures – to obtain:

 a service oriented software system

 a modular software system

 a dynamic system that allow to install, start, stop and uninstall modules at runtime

The OSGi technology is essentially designed for Java programming language, and give the possibility
to build complex applications starting from basic modules (i.e. the bundles), designed keep in mind
reusability, collaboration between components and flexibility. The so called OSGi Framework can be
summarized in a modular framework designed to fulfill the increasing demand for extensible and
cooperative execution of software bundle – the software module elements of the framework itself
[31].

The OSGi framework approach and the IoT paradigm share many commons finalities. The OSGi
ecosystem provides a large variety of interested stakeholders and a huge number of applications and
developments tools. The affinity between OSGi and IoT emerge considering the OSGi programming

74

model, that aim to build applications in components able to dynamically interact each other, and IoT
world with the concept of devices network connected to Internet and each other.

Figure 44 – OSGi and IoT similarities (source: OSGi Alliance)

Python iPOPO (Used by LINKS)
iPOPO [32] is a Python-based Service-Oriented Component Model (SOCM) based on Pelix, a dynamic
service platform. They are inspired on two popular Java technologies for the development of long-
lived applications: the iPOJO component model and the OSGi Service Platform. iPOPO enables to
conceive long-running and modular IT services in Python.
iPOPO aims to simplify service-oriented programming on OSGi frameworks in Python language; the
name iPOPO is an abbreviation for injected POPO, where POPO would stand for Plain Old Python
Object. The name is in fact a simple modification of the Apache iPOJO project, which stands for
injected Plain Old Java Object.
The Service-Oriented Architecture (SOA) consists in linking objects through provided contracts
(services) registered in a service registry.
The iPOPO framework allows developers to more clearly separate functional code (i.e. POPOs) from
the non-functional code (i.e. dependency management, service provision, configuration, etc.). At run
time, iPOPO combines the functional and non-functional aspects.
ROS
ROS stands for Robotic Operating System and it is a very versatile framework with which software
for robots can be developed [33][33] . The way ROS is built allows us to leverage the best tools
developed by 3rd parties with our own tools. These can go from sensor integration, environment
model and ADAS functions to vehicle control and HMI (Human machine interface). On top of this
ROS also provides a fast and simple way for different processes to communicate with each other
over the IP network.

4.2 Specification of In-Vehicle IoT platform in the different Pilot Sites

For every Pilot Site, in this chapter the initial specifications are presented in table format. The reader
has to consider the functionality entries into the tables, in relation with IoT technologies described in
previous chapter § 3.1.

75

4.2.1 In Vehicle IoT Platform of Tampere Pilot Site

Table 6 – In Vehicle IoT Platform of Tampere Pilot Site

Functionality Tampere Pilot Site implementation

Remote Management DDS functionalities

Context-awareness Vehicle world model: high-level view of the surroundings (road
object, static and dynamic obstacles, etc.) as outcome of data fusion
from multiple sensors

Syntactic and Semantic
Interoperability

DDS is used for exchange of information in the vehicle.

Data Management DDS

IoT Device Adaptation DDS & MQTT

OEM Systems
Communication

DDS + CANbus connection

IoT In-vehicle components no additional in-vehicle sensors were added,
In-vehicle HMI

OEM In-vehicle
components

no in-vehicle OEM IoT components. Data are read from vehicle CAN-
bus. Actuators are directly electronically controlled.

Application container or
Runtime Environment

ROS

Communication between the different components in the vehicle is based on DDS. For each of the
sensors and other inputs, including V2X input, topics are defined, making the information in real-
time available to the other modules.

The following Table 7 reports a list of signals/parameters related to IF5 interface, introduced in §2.3,
that the Intra-Vehicle Network makes available through DDS to the in-vehicle IoT platform.

Table 7 – Vehicle data (IF5 interface) implemented in Tampere Pilot Site

Signal/Parameter Source

Vehicle Reference Position RTK-GPS receiver + IMU

Vehicle Heading RTK-GPS receiver + IMU

Vehicle TimeStamp NTP

Vehicle Speed RTK-GPS receiver

Vehicle Longitudinal & Lateral Accelerations IMU

Vehicle YawRate CAN bus (curvature)

Vehicle Vertical Acceleration IMU

Gas Pedal Position CAN bus

Steering Wheel Angle CAN bus

Left Turn Signal Status CAN bus

Right Turn Signal Status CAN bus

76

4.2.2 In Vehicle IoT Platform of Versailles Pilot Site

Table 8 – In Vehicle IoT Platform in Versailles Pilot Site

Functionality Test Site France implementation

Remote Management Intempora RTMaps framework

Context-awareness Vehicle environment (road object, lane markings, etc.) as
outcome of data fusion from multiple sensors

Syntactic and Semantic
Interoperability

oneM2M

Data Management Intempora RTMaps framework

IoT Device Adaptation Intempora RTMaps bridges (oneM2M, MQTT)

OEM Systems Communication Intempora RTMaps, UDP, TCP

IoT In-vehicle components Intempora RTMaps, UDP, TCP

OEM In-vehicle components Intempora RTMaps, UDP, TCP

Application container or
Runtime Environment

Linux Ubuntu
Intempora RTMaps

Table 9 – Vehicle data (IF5 interface) implemented in Versailles Pilot Site

Signal/Parameter Source

Vehicle Reference Position GNSS receiver

Vehicle Heading CAN bus

Vehicle TimeStamp CAN bus

Vehicle Speed CAN bus

Vehicle Longitudinal & Lateral Accelerations IMU

Vehicle YawRate CAN bus

Vehicle Vertical Acceleration CAN bus

Vehicle Battery Life CAN bus

Object Relative Localization Vision System

4.2.3 In Vehicle IoT Platform of Livorno Pilot Site

Table 10 – In Vehicle IoT Platform of Livorno Pilot Site

Functionality Test Site Italy implementation

Remote Management OSGi remote management tools

Context-awareness Data annotation with GPS coordinates

Syntactic and Semantic
Interoperability

oneM2M

Data Management - pothole detection
- other “edge” application/data fusion algorithm
- Dedicated OSGi bundles implementing “edge” application/data
fusion algorithm as a service (e.g. pothole detection algorithm,
filtering and aggregation)

IoT Device Adaptation - 6LoWPAN
- MQTT
- Extendable with other relevant protocols

77

OEM Systems
Communication

- MQTT
- CANbus
- Extendable with other relevant protocols

IoT In-vehicle components - Sensors for pothole detection (accelerometer, smartphone, IMU)

OEM In-vehicle
components

- CONTI E-Horizon (IoT connected)

Application container or
Runtime Environment

OSGi framework:
- Felix iPOJO
- Pelix iPOPO

Communication between the stacks should be based on open standards to ensure interoperability.
The in-vehicle IoT platform is designed to be syntactically and semantically compliant with OneM2M
standard. This has been made possible thanks to the interoperability at the communication level.

For the communication between the different OEM components, the introduction of protocols is still
under definition. We are paying special attention to overhead lightness and communication speed.

Regarding the IoT device adaptation, different IoT communication protocols with the devices are
supported, such as CoAP/6LowPAN (which can also be used across multiple communications
platforms) and MQTT (publish/subscribe-based lightweight messaging protocol for Machine to
Machine (M2M) communication, on top of the TCP/IP protocol).

In brief, the in-vehicle IoT platform of Livorno Pilot Site is a modular software deployed on the On
Board Unit (OBU). It is an IoT gateway, that allows to communicate with the outside through IoT or
ITS (LTE communication, ITS G5) standards, which can send or receive critical information produced
by the IoT system through V2V / V2X standard messages.

This IoT platform can be easily deployed on OBU based on different hardware components through a
docker based approach.

Hereafter, a list of signals/parameters related to IF5 interface, introduced in §2.3 that In-Vehicle IoT
Platform will get from Intra-Vehicle Network.

Table 11 – Vehicle data (IF5 interface) implemented in Livorno PIlot Site

Signal/Parameter Source

Vehicle Reference Position GNSS receiver

Vehicle Heading GNSS receiver

Vehicle TimeStamp GNSS receiver

Vehicle Speed CAN bus

Reverse Gear CAN bus

Vehicle Longitudinal & Lateral Accelerations CAN bus

Vehicle YawRate CAN bus

Vehicle Vertical Acceleration CAN bus

Brake Pedal Status CAN bus

Gas Pedal Position CAN bus

Emergency Brake (or ABS) Status CAN bus

Cruise Control Status CAN bus

Adaptive Cruise Control Status CAN bus

Speed Limiter Status CAN bus

Steering Wheel Angle CAN bus

Low Beam Status CAN bus

78

High Beam Status CAN bus

Left Turn Signal Status CAN bus

Right Turn Signal Status CAN bus

Day Time Running Lights Status CAN bus

Reverse Lights Status CAN bus

Fog Lights Status CAN bus

Park Lights Status CAN bus

Table 12 – Additional IoT devices data (IF6 interface); Livorno Pilot Site vehicles

Signal/Parameter Source

Acceleration Status CAN or 6LoWPAN Inertial Sensors

Motion Detection Status Smartphone

4.2.4 In Vehicle IoT Platform of Brainport Pilot Site

4.2.4.1 TNO prototype

Table 13 – In Vehicle IoT Platform of TNO vehicle

Functionality TNO implementation

Remote Management ROS framework

Context-awareness Vehicle world model: high-level view of the surroundings (road
object, lane markings, etc.) as outcome of data fusion from multiple
sensors

Syntactic and Semantic
Interoperability

oneM2M

Data Management ROS framework

IoT Device Adaptation ROS framework bridges (Simulink, oneM2M)

OEM Systems
Communication

ROS, UDP

IoT In-vehicle components N/A

OEM In-vehicle components N/A

Application container or
Runtime Environment

ROS framework

The TNO prototype will rely on the ROS framework as middleware for bridging vehicle control
components (MATLAB/Simulink) with the IoT oneM2M platform residing in the cloud. Different ROS
components (i.e., ROS nodes) will take care of handling the network interface with oneM2M
(RESTful interface) and V2X communication (ETSI ITS G5). Other ROS nodes will manage the data
coming from these different communication sources as well as the data coming from internal
sensors to build the so-called world-model that includes object-level description of road objects,
lane markings, etc. The world model data combined with application data from the IoT cloud
services will be sent to control components via UDP/ROS to help in automated driving decisions. In
the inverse path, control components will share internal vehicle data (e.g., acceleration, speed, etc.)
to be shared with other IoT nodes via the communication interface with the oneM2M platform.

Hereafter the list of signals/parameters related to IF5 interface, introduced in §2.3, that the In-
Vehicle IoT Platform will get from Intra-Vehicle Network.

79

Table 14 – Vehicle data (IF5 interface); TNO prototype

Signal/Parameter Source

Vehicle Reference Position GNSS receiver

Vehicle Heading GNSS receiver

Vehicle TimeStamp GNSS receiver

Vehicle Speed CAN bus

Reverse Gear CAN bus

Vehicle Longitudinal & Lateral Accelerations CAN bus

Vehicle YawRate CAN bus

Vehicle Vertical Acceleration CAN bus

Brake Pedal Status CAN bus

Gas Pedal Position CAN bus

Emergency Brake (or ABS) Status CAN bus

Cruise Control Status CAN bus

Adaptive Cruise Control Status CAN bus

Speed Limiter Status CAN bus

Steering Wheel Angle CAN bus

Low Beam Status CAN bus

High Beam Status CAN bus

Left Turn Signal Status CAN bus

Right Turn Signal Status CAN bus

Day Time Running Lights Status CAN bus

Reverse Lights Status CAN bus

Fog Lights Status CAN bus

Park Lights Status CAN bus

Tracked front object time gap Vehicle control system

Tracked object relative speed CAN bus

Tracked object relative position CAN bus

4.2.4.2 NEVS Prototype

Table 15 – In Vehicle IoT Platform of NEVS vehicle

Functionality NEVS implementation

 Remote Management ROS framework (In coordination with Brainport)

Context-awareness In coordination with Brainport

Syntactic and Semantic Interoperability oneM2M (In coordination with Brainport)

Data Management ROS framework (In coordination with Brainport)

IoT Device Adaptation ROS framework (In coordination with Brainport)

OEM Systems Communication dSpace, UDP

IoT In-vehicle components N/A

OEM In-vehicle components Adapted ECU software

Application container or Runtime Environment ROS framework (In coordination with Brainport)

80

Table 16 – Vehicle data (IF5 interface); NEVS prototype

Signal/Parameter Source

Vehicle Speed CAN bus

Vehicle Longitudinal & Lateral Accelerations CAN bus

Steering Wheel Angle CAN bus

Vehicle Yaw Rate CAN bus

Wheel Speeds CAN bus

Gear CAN bus

Accelerator Pedal Position CAN bus

Brake Pedal Status CAN bus

Steering Torque CAN bus

4.2.5 TUEIN prototype

The following description for In-Vehicle IoT Platform implementation can be considered for TUEIN
prototype.

Table 17 – In Vehicle IoT Platform of TUEIN vehicle

Functionality TUEIN implementation

Remote Management -

Context-awareness Probabilistic world model using camera input + IoT
connectivity
- WIRE
- Data annotation with GPS timestamp for G5

connection

Syntactic and Semantic
Interoperability

- OneM2M (MQTT)
- HUAWEI EAI platform (HTTPS)
- ROS framework

Data Management - ROS framework bridges (oneM2M)
- Technolution IoT GateWay (for LTE & ITS-G5

datalogging)

IoT Device Adaptation - ROS Framework

OEM Systems Communication - ITS-G5 (CAM, DENM)
- CANbus
- Ethernet/UDP

IoT In-vehicle components n/a

OEM In-vehicle components n/a

Application container or Runtime
Environment

Linux Ubuntu 16.04
RTMaps 4.6.0
ROS Kinetic
Docker

Within AUTOPILOT the main challenge was to implement the vehicle as part of the Internet of
Things. Two main routes are available to make a vehicle an IoT connected device. One route is to use
a ETSI ITS G5 connection. The other main route is to use a cellular 4G/5G connection. These
connections can be made if gateway functionality is added to the vehicle. Figure 45 shows the
general gateway layer in IoT devices to connect to applications through an IoT transport layer.

81

Applications can access data from several connected devices and use this information for their
specific goal. The applications can reside somewhere on the web, on a mobile phone or even be
part of applications in the vehicle itself.

IoT
Gateway

4G/5G

IoT
Gateway
G5 Wifi-p

IoT device X

Internal device
layers

IoT transport service layer

Application X

IoT
Gateway

4G/5G

IoT
Gateway
G5 Wifi-p

IoT device Y

Internal device
layers

Application Y Application Z

Gateway layerGateway layer

Figure 45 – General gateway layer in IoT devices

Flowradar

The Technolution on board Flowradar unit provides the ETSI ITS G5 gateway functions in a vehicle.
The system is modular by design and can also hold 3G/4G module to provide the IoT gateway to the
cellular network. So the device should be able to provide even both gateway functions.

Figure 46 – Modular principle of the Flowradar G5 gateway

Basic functionality of the Flowradar is the ETSI ITS G5 gateway for V2V and V2X communication in
combination with GPS. A 4G/5G module is not yet available for the Flowradar. To be able to use the
4G gateway part in the vehicle we will use a DELL 3002 gateway with 4G functionality.

82

IoT
Gateway

4G/5G
(DELL 3002)

IoT
Gateway
G5 Wifi-p

(Flowradar)

Gateway layer

C
A

N

Eth
ern

et/P
O

E

Ethernet
USB

3G
/4G

G
5

B
leu

to
o

th
 4

B
leu

to
o

th

W
iFi

Figure 47 – Gateway layer functionality filled in with two interconnected units, one for the ETSI ITS G5 access and one
for 4G.

In car internal connectivity of the gateway layer

 Ethernet

 POE Ethernet

 Wifi

 Bluetooth

 USB

 CAN

In car external connectivity of the gateway layer

 ETSI ITS G5 / IEEE 802.11p

 3G/4G LTE

Gateway protocols

 ETSI ITS G5 gateway protocols: CAM messages according to the ETSI standards

 4G/5G gateway protocols: OneM2M standards

Gateway additional functions

 GPS (gps time used for time synchronization of ETSI ITS G5 messages)

 Log files/local storage

 Security

ETSI standards

For the interaction of Autonomous driving with the roadside, specific for “Vehicle to road side
communication”, it is needed that the V2I communication is standardized in an European format
(ETSI). Information to and from the vehicle can be addressed through CAM (adapted for the pilotting
for use with VRU) messages.

Connection with OneM2M MQTT and protobuf

The gateway was positioned as a MQTT broker for the vehicle information. The vehicle has its own
information broker on board to share information between devices and applications with the publish
subscribe mechanism.

The following Table 18 report a list of signals/parameters related to IF5 interface, introduced in §2.3,
that In-Vehicle IoT Platform will get from Intra-Vehicle Network.

83

Table 18 – Vehicle data (IF5 interface); TUEIN prototype

Signal/Parameter Source

Vehicle Reference Position GNSS receiver

Vehicle Heading GNSS receiver

Vehicle TimeStamp GNSS receiver

Vehicle Speed CAN bus

Reverse Gear CAN bus

Vehicle Longitudinal & Lateral Accelerations CAN bus

Vehicle YawRate CAN bus

Vehicle Vertical Acceleration CAN bus

Brake Pedal Status CAN bus

Gas Pedal Position CAN bus

Cruise Control Status CAN bus

Adaptive Cruise Control Status CAN bus

Speed Limiter Status CAN bus

Steering Wheel Angle CAN bus

Low Beam Status CAN bus

High Beam Status CAN bus

Day Time Running Lights Status CAN bus

Fog Lights Status CAN bus

Tracked object relative speed CAN bus

Tracked object relative position CAN bus

Object classification Vision system

Object relative localization Vision system

4.2.5.1 VALEO prototype

Table 19 – In Vehicle IoT Platform of VALEO vehicle

Functionality VALEO implementation

 Remote Management Intempora RTMaps

Context-awareness Vehicle world model: high-level view of the surroundings (road
object, lane markings, etc.) as outcome of data fusion from multiple
sensors

Syntactic and Semantic
Interoperability

oneM2M

Data Management Intempora RTMaps

IoT Device Adaptation Intempora RTMaps
+ Valeo Smart Platform (HTTPS, MQTT, ProtoBuff)

OEM Systems
Communication

Intempora RTMaps, UDP, CAN

IoT In-vehicle components Misc sensors treated as IoT through Valeo Smart Platform

OEM In-vehicle components N/A

Application container or
Runtime Environment

Intempora RTMaps

The RTMaps middleware synchronizes the arrival of low-level signals from various sensors (cameras,

84

lidar, CAN data). Several RTMaps components handle the signal processing. The additional Valeo
Smart Platform relies on MQTT to enable data exchanges between in-vehicle components.

The following table reports a list of signals/parameters related to IF5 interface that In-Vehicle IoT
Platform will get from Intra-Vehicle Network

Table 20 – Vehicle data (IF5 interface); VALEO prototype

Signal/Parameter Source

Vehicle Reference Position GNSS receiver

Vehicle Heading GNSS receiver

Vehicle Speed CAN bus

Steering Wheel Angle CAN bus

Vehicle Longitudinal & Lateral Accelerations CAN bus

ESP Yaw Rate CAN bus

Car suspensions CAN bus

Wheel speed CAN bus

Brake Pressure CAN bus

Acceleration IMU System

Pitch Angular velocity IMU System

Car positioning Vision System

Object classification Vision system

Object relative localization Vision system

4.2.6 In Vehicle IoT Platform of Vigo Pilot Site

Table 21 – In Vehicle IoT Platform of Vigo Pilot Site

Functionality Test Site Spain implementation

 Remote Management DDS functionalities

Context-awareness Vehicle world model: high-level view of the surroundings (road
object, static and dynamic obstacles, etc.) as outcome of data fusion
from multiple sensors

Syntactic and Semantic
Interoperability

DDS is used for exchange of information in the vehicle.

Data Management DDS

IoT Device Adaptation DDS & MQTT

OEM Systems
Communication

DDS + CANbus connection

IoT In-vehicle components no additional in-vehicle sensors were added,
In-vehicle HMI

OEM In-vehicle
components

no in-vehicle OEM IoT components. Data are read from vehicle CAN-
bus. Actuators are directly electronically controlled.

Application container or
Runtime Environment

ROS

Application container and remote management

In the Spanish Pilot site the selected runtime environment is the OSGi framework Equinox. OSGi
remote management tools are chosen to remotely provide, configure, update, monitor and

85

start/stop the services and applications running in the IoT in-vehicle platform, see more information
about OSGi in section 3.1.1 and 3.1.7.

Context awareness and interoperability

To be aware of the context through a sort of “world model” the annotated values from sensed data
are used.

The syntactic and semantic interoperation between devices and services connected to the in-vehicle
IoT platform are provided using the DDS standard.

Data management and IoT device adaptation

The data from different devices as camera, mobile phones or its own vehicle sensors are fused
together and processed working as a “virtual sensor”, for instance, for VRU detection. Regarding the
IoT device adaptation, the supported communication protocols are HTTPS and MQTT as basis, but
other protocols could be supported to cover specific needs during the development phase.

OEM systems

The communication with OEM systems will be done through CAN and no OEM in-vehicle
components will be provided.

Vehicle signals/parameters

Table 22 – Vehicle data (IF5 interface) implemented in Vigo Pilot Site

Signal/Parameter Source

Vehicle Reference Position RTK-GPS receiver + IMU

Vehicle Heading RTK-GPS receiver + IMU

Vehicle TimeStamp NTP

Vehicle Speed RTK-GPS receiver

Vehicle Longitudinal & Lateral Accelerations IMU

Vehicle YawRate CAN bus (curvature)

Vehicle Vertical Acceleration IMU

Gas Pedal Position CAN bus

Steering Wheel Angle CAN bus

Left Turn Signal Status CAN bus

86

5 Conclusions and outlook

At the end of the project, most of the envisaged prototype concepts have been implemented.
Deviations from the original plan mainly concern technical details at prototype level, while at Pilot
Site level the IoT implementation initially planned in WP1 has been followed.

The final specifications for an open in-vehicle IoT platform have been defined, and are included in
D1.6 as requirements and high level view (updating the D1.5), while the detailed IoT integration
specifications for each prototype are provided in D2.1.

In-vehicle IoT platform openness has been addressed in terms of minimum common dataset that
thas to be made available from the vehicle to the IoT (IF5, interface between the in-vehicle network
and the in-vehicle IoT platform, defined in sections 1,2 and specified for the prototypes in section 3.
Regarding in-vehicle IoT platform interoperability (see also D2.1 conclusions) the focus has been to
prove IoT concepts and use cases, rather than having a common implementation. As result, the
technical solutions on vehicle prototypes show different instantiations of IoT, based on a common
architectural view (chapter 2). Each IoT platform prototype demonstrates interoperability within
vehicle components and with the IoT infrastructure of the pilot site.

In most cases in-vehicle IoT platform has achieved Technology Readiness Level of 6 (technology
demonstrated in relevant environment) thanks to the activities performed in all the test sites. Some
cases achieve a TRL 7 (system prototype demonstration in operational environment). Some
prototypes are TRL 3 and do not have an open IoT yet, but they have been kept in the deliverable as
they are an useful proof of concept of services that could be part of an open IoT in the future.

Interviewing the prototype owners, most of the lessons learned after implementation and piloting
had to do with integration: in the Tampere Pilot Site a more modular approach would improve
reusability of the developed components and allow the integration of more IoT nodes. In Brainport,
the motion planning functionality used for Platooning and Automated Valet Parking should be
further enhanced to include data about other road objects in the vehicle world model. The Highway
Pilot integration in Brainport was a trade-off between exploiting existing platforms and the IoT,
therefore is not a complete solution, which would enable the connection to more IoT objects. In the
Urban Driving use case in Brainport, the choice for using multiple IoT platforms (OneM2M &
HUAWEI EAI) and using different communication protocols (MQTT & HTTP) proved very useful to
create a redundant system. Since during piloting some IoT clouds systems were not performing as
expected, Brainport partners were able to partially continue tests anyway with the other working
system.

In Versailles PS specifically, the lessons learned involved the limits and improvement margins for
communication technology, both cellular and 802.11OCB based. The feedback from Livorno Pilot Site
was mainly on the improvements of data processing function by the on board units.

We have also to consider that piloted solutions are using existing connectivity, while the incoming
5G deployment is expected to be highly beneficial to the Internet-of-Things. It can be reasonably
stated that the forthcoming 5G based platforms used for connecting the vehicle to the IoT can reach
higher level of maturity and be fully validated in the incoming 2-3 next years. Exploitation will
involve highly automated passenger cars, shuttles, commercial as well as industrial vehicle
automation, off-road vehicles, such as forestry, harbor and mining equipment, where the vehicle has
to be integrated with operational management systems.

Another aspect is the use of the IoT backend system by new ITS service providers. For instance in
case of Platooning, results are exploited by upgrading platooning functionality in freight vehicles as
part of B2B contracts, particularly with respect to remote platoon guidance via the cloud-based
platoon service. In both the Platooning and Automated Valet Parking application the software suite
developed in AUTOPILOT will be ported to a new car laboratory which natively supports AD on a

87

higher SAE level.

Further pilot outcomes will be addressed by the evaluation WP (T4.2) while exploitation perspectives
will be more extensively treated in WP5 (T5.4).

88

6 References

[1] AUTOPILOT Deliverable D1.5, “Initial Open IoT Vehicle Platform Specification”

[2] Technology readiness levels, in General Annexes, Horizon 2020, Work Programme 2018-2020

[3] AUTOPILOT Deliverable D2.1, “Vehicle IoT Integration Report”

[4] AUTOPILOT Deliverable D1.7, “Initial specification of Communication System for IoT

enhanced AD”

[5] AUTOPILOT Deliverable D1.1, “Initial Specification of IoT-enabled Autonomous Driving use

cases”

[6] Levels of Driving Automation defined by SAE © International standard J3016, 2014

[7] AUTOPILOT Deliverable D1.3, “Initial IoT Self-organizing Platform for Self-driving Vehicles”

[8] ETSI TS 102 637-2, Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set

of Applications; Part 2: Specification of Cooperative Awareness Basic Service

[9] ETSI TS 102 637-3, Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set

of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic

Service.

[10] ETSI ITS G5 documents: http://www.etsi.org/technologies-clusters/technologies/intelligent-

transport

[11] TNO website: https://www.tno.nl/nl/over-tno/nieuws/2016/4/geslaagde-demonstratie-

automatisch-en-cooperatief-rijden-aan-eu-transportministers/

[12] VW Tiguan: https://www.volkswagen.co.uk/assets/common/pdf/brochures/tiguan-

brochure.pdf

[13] MQB platform: https://en.wikipedia.org/wiki/Volkswagen_Group_MQB_platform

[14] OSGi Remote Management Tools: https://wiki.eclipse.org/OSGi_Remote_Management_Tool

[15] LCM: https://dspace.mit.edu/bitstream/handle/1721.1/46708/MIT-CSAIL-TR-2009-041.pdf

[16] API provided by LCM: https://lcm-proj.github.io/

[17] ZeroMQ: http://zeromq.org/whitepapers:architecture;

http://www.aosabook.org/en/zeromq.html;

[18] AMQP: https://www.amqp.org/;

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

https://www.amqp.org/product/architecture

[19] OASIS: https://www.oasis-open.org/

[20] OCPP : https://www.oasis-open.org/committees/download.php/59590/

[21] MQTT: https://www.iso.org/standard/69466.html

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[22] Protocol Buffers (ProtoBuf): https://developers.google.com/protocol-buffers/docs/overview

[23] DDS: http://portals.omg.org/dds/what-is-dds-3/

[24] G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, Transmission of IPv6 packets over IEEE

802.15.4 networks, IETF RFC 494

[25] Bluetooth Low Energy (BLE): http://www.bluetooth.com/Pages/Low-Energy.aspx/

http://www.etsi.org/technologies-clusters/technologies/intelligent-transport
http://www.etsi.org/technologies-clusters/technologies/intelligent-transport
https://www.tno.nl/nl/over-tno/nieuws/2016/4/geslaagde-demonstratie-automatisch-en-cooperatief-rijden-aan-eu-transportministers/
https://www.tno.nl/nl/over-tno/nieuws/2016/4/geslaagde-demonstratie-automatisch-en-cooperatief-rijden-aan-eu-transportministers/
https://www.volkswagen.co.uk/assets/common/pdf/brochures/tiguan-brochure.pdf
https://www.volkswagen.co.uk/assets/common/pdf/brochures/tiguan-brochure.pdf
https://wiki.eclipse.org/OSGi_Remote_Management_Tool
https://dspace.mit.edu/bitstream/handle/1721.1/46708/MIT-CSAIL-TR-2009-041.pdf
https://lcm-proj.github.io/
http://zeromq.org/whitepapers:architecture
http://www.aosabook.org/en/zeromq.html
https://www.amqp.org/
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://www.amqp.org/product/architecture
https://www.oasis-open.org/committees/download.php/59590/
https://www.iso.org/standard/69466.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://developers.google.com/protocol-buffers/docs/overview
http://portals.omg.org/dds/what-is-dds-3/
http://www.bluetooth.com/Pages/Low-Energy.aspx/

89

[26] "FI-WARE NGSI-9 Open RESTful API Specification", FIWARE Forge, 2017, to be retrieved via,
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-
9_Open_RESTful_API_Specification

[27] “FI-WARE NGSI-10 Open RESTful API Specification", FIWARE Forge, 2017, to be retrieved via,
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-
10_Open_RESTful_API_Specification

[28] "Functional Architecture", OneM2M, TS-0001-V2.10.0, August 2016, to be retrieved via:
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-
%20Functional_Architecture-V2_10_0.pdf.

[29] Kovacs, Erno, et al. "Standards-Based Worldwide Semantic Interoperability for IoT." IEEE
Communications Magazine 54.12 (2016): 40-46.

[30] OSGi Alliance: https://www.osgi.org/
[31] OSGi architecture: https://www.osgi.org/developer/architecture/
[32] Python iPOPO: https://ipopo.readthedocs.io/en/latest/
[33] ROS: http://www.ros.org/about-ros/
[34] H2020 Reference for Technology Readiness Level from H2020 Work Program 2018-2020

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-10_Open_RESTful_API_Specification
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-%20Functional_Architecture-V2_10_0.pdf
http://www.onem2m.org/images/files/deliverables/Release2/TS-0001-%20Functional_Architecture-V2_10_0.pdf
https://www.osgi.org/
https://www.osgi.org/developer/architecture/
https://ipopo.readthedocs.io/en/latest/
http://www.ros.org/about-ros/

