AUTOPILOT

Grant Agreement Number: 731993

Project acronym: AUTOPILOT

Project full title: AUTOmated driving Progressed by Internet Of Things

D-3.7

Test data management platform architecture

Due delivery date: 31/05/2018
Actual delivery date: 31/05/2018

Organisation name of lead participant for this deliverable: AKKA

Project co-funded by the European Commission within Horizon 2020 and managed by the European GNSS Agency (GSA)

Dissemination level

PU Public X
PP Restricted to other programme participants (including the GSA)

RE Restricted to a group specified by the consortium (including the GSA)

co Confidential , only for members of the consortium (including the GSA)

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 — 2020)

AUTOPILOT

Document Control Sheet

Deliverable number: D3.7
Deliverable responsible: | AKKA
Work package: 3
Editor: Sadeq Zougari

Author(s) — in alphabetical order
Name Organisation E-mail
AITAAZIZI Amine AKKA amine.ait-aazizi@akka.eu
BANOUAR Yassine CONTI yassine.banouar@continental-corporation.com
DALET Benoit AKKA benoit.dalet@akka.eu
FALCITELLI Mariano CNIT mariano.falcitelli@cnit.it
KAHALE Elie AKKA elie.kahale@akka.eu
KALOGIROU Kostas CERTH kalogir@certh.gr
MATTA Joe VEDECOM joe.matta@vedecom.fr
NETTEN Bart TNO bart.netten@tno.nl
RIAL Moisés CTAG moises.rial@ctag.com
SCHREINER Floriane VEDECOM floriane.schreiner@vedecom.fr
SCHOLLIERS Johan VTT johan.Scholliers@vtt.fi
VELIZHEV Alexander IBM RE ave@zurich.ibm.com
ZOUGARI Sadeq AKKA sadeg.zougari@akka.eu

Document Revision History

Version | Date Modifications Introduced
Modification Reason Modified by

V0.1 31/11/2017 | ToC ZOUGARI, Sadeq

30/01/2018 | First Draft ZOUGARI, Sadeq

Draft with responsibilities ZOUGARI, Sadeq

V0.9 09/05/2018 | Draft ready for peer review All

V0.10 29/05.2018 | All partners contributions completed | All

V1.0 29/05/2018 | Version including peer reviewers DALET Benoit, D’ORAZIO Leandro,
comments NETTEN Bart, ZOUGARI Sadeq

mailto:amine.ait-aazizi@akka.eu
mailto:yassine.banouar@continental-corporation.com
mailto:benoit.dalet@akka.eu
mailto:mariano.falcitelli@cnit.it
mailto:elie.kahale@akka.eu
mailto:kalogir@certh.gr
mailto:joe.matta@vedecom.fr
mailto:bart.netten@tno.nl
mailto:floriane.schreiner@vedecom.fr
mailto:ave@zurich.ibm.com
mailto:sadeq.zougari@akka.eu

UTOPILOT

Abstract

This document presents the test data platform architecture. The platform includes the Pilot Sites’
Test Servers which collect test data at pilot site level, and the Centralised Test Server that stores all
the test data for evaluation, and also the evaluation results.

This document explains the implemented architectures in technical detail. For each pilot site, the
document identifies the design requirements and presents the chosen solution to be implemented
for the development of data uploading, data processing, data storage and data accessing
components.

This document also describes what will be implemented to support the provisioning of test data for
the evaluation tasks that require log data from vehicles, loT platforms and cloud services, as well as
situational data from the pilot sites to detect situations and events, and to calculate the indicators,
and subjective data such as survey results and questionnaires from user and stakeholder activities.

The Centralised Test Server has to implement features that enable the storage and sharing of
collected test data in a harmonised way, from any pilot site, and provide interfaces to access and use
these data for evaluation purposes.

Legal Disclaimer

The information contained in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced consortium
members shall have no liability for damages of any kind, including without limitation direct, special,
indirect, or consequential damages, that may result from the use of these materials subject to any
liability which is mandatory due to applicable law. © 2017 by AUTOPILOT Consortium.

Abbreviations and Acronyms

Acronym Definition
ACP Access Control Policy
ADA Automated Data Analysis
ADAS Advanced Driver-Assistance Systems
AE Application Entity
API Application Programming Interface
ARP Address Resolution Protocol
ASCII American Standard Code for Information
Interchange
AVP Automated Valet Parking
CAM Cooperative Awareness Message
CAN Controller Area Network
CIN Content INstance
CON attribute CONtent attribute
CSE Common Services Entity
CTS Centralised Test Server
DDS Data Distribution Service

AUTOPILOT

DMP Data Management Plan

EC European Commission

ETSI European Telecommunications Standards Institute
FAIR Findable — Accessible — Interoperable-Reusable
FESTA Field opErational teSt supporT Action
GA Grant Agreement

GPS Global Positioning System

HMI Human-Machine Interface

HTTP Hypertext Transfer Protocol

loT Internet of Things

IP Internet Protocol

ITS Intelligent Transportation Systems
JSON JavaScript Object Notation

LIDAR Light Detection And Ranging

NAS Network Attached Storage

OBU On-Board Unit

ORDP Open Research Data Pilot

PO Project Officer

PSTS Project site test server

RADAR RAdio Detection And Ranging

RAID Redundant Array of Independent Disks
REST REpresentational State Transfer

RPM Revolutions Per Minute

SFTP Secured File Transfer Protocol

UPER Unaligned Packed Encoding Rules

URI Universal Resource Identifier

VPN Virtual Private Network

WP Work Package

XER XML Encoding Rules

AUTOPILOT

Table of Contents

EXECULIVE SUMMAIY...ccuiieeiiiiiiiiieiiiieiiiniiieeiiinniieensisnssienssssnssssnssssssssssnssssnssssnssssnssssnssssas 10
B I 141 Yo L1 o o 11
1.1 Purpose of the dOCUMENT.......ciiiiiiiiiee e 11
1.2 Intended QUAIENCE.....c..uiiiiiieiie ettt ettt et sbe e e sare e 11
1.3 DEfiNITIONS .ottt s re e 11

2 Test data collection and evaluation system overviewccccccereeeeccrreeenccerenenccsnenenn. 12
2.1 CONTEXE OVEIVIEW ..eeiiiiiiiieeiiiiee ettt ettt e e sttt e st e s saree e s s eabe e e s ssaree e s sareee s snreeesenrens 12
2.2 Pilot Site TESt SEIVEr OVEIVIEW ...cc..eeieieeeiiieniee ettt e sreeeriteesiteesveeesabeesbeessbeeesbeesaeeas 13
2.3 Centralised TeSt SErVEr OVEIVIEWcocuieiuierieenieenee ettt ettt st st sree e 14

3 Versailles pilot site specifiCities....c.cccuueeuiirieeciiiiiiicrrccc e reeee s e e e e e s e nanes 16
3.1 Architecture design rationNal@..........ccoocuieeiieiiie e 16
3.1.1 Non-functional reqUIreMENES......c..ceiieciiieieirie e e e seaee s 16
3.1.2 DesSigN ratioNale....uiii e sraae s 18

3.2 Global @rChiteCTUIE..c..ei et 19
3.3 Components arChit@CUIEccocciiiiiiiiee ettt e e e ree e e e 19
3.3.1 Data upload COMPONENTESciiiiiiiieeciiee e e s e e e raae e e e sareee s 19
3.3.2 Data processing COMPONENTS ...c.uuuiriieteririiiiiiteeeeeeessiirreeeeeessssssrrreeeeessssssnsseseeees 26
3,303 Data St Ora8 s e 27

4 Brainport pilot site SpecifiCities......cccueereiiiiiiiiiecci e e e e naees 29
4.1 Architecture design rationale.........ccceeieeuiiee i 29
4.1.1 Non-functional reqUIrE€MENTS.......ccuueiiiiiieeieiieee et e e 29
A 0 11 = { g W =Yl o o = [T PSPPSR 31

4.2 Global architeCtUIE...c. it 31
4.3 ComMPONENTS arChItECIUIE ..ooouviieeceiiee ettt ettt e e et e e e e be e e e ebae e e e eneeeaeeaes 33

L T R D 1= - W =] oo 1Y 1 (o] oY A PP PP P PP PPPPPPPPPPPPPPPPRS 33
4.3.2 Data upload COMPONENTSuviiiiiiiiiecciiee e ettt e e e e sare e e e sarae e e e nbae e e e eaeees 34
4.3.3 Data processing COMPONENTScccviiiiiiiiiiiieiiiiieietereeeeeereeereteeerererererererer. 34
N A D -) -) o] - 1= PP 36
e R D = - - o] of 1 PRSPPI 36

5 Livorno pilot site specifiCities.....cccceeiiiimriiiiiniiiiiirierrrc e nenas 37
5.1 Architecture design rationale.........cccoecuieiiiciiie e 37
5.1.1 Non-functional reqUIre€mMeENTS.........ccceciiiiieiiiie et e e e 37
5.1.2 DesSigN ratioNale....cccc e aae s 39

5.2 Global archit@Cture....ccocuei i 39

5.3 Components arChit@CtUIEcooccieiiiiiiee et e e et 39

AUTOPILOT

5.3.1 Data upload COMPONENTESuuiiiiiiiieieiiee ettt srre e e e e srae e e e nraeee s 39
5.3.2 Data processing COMPONENTSuuiiieiiiiiriiiiiiiteeeeeeeeiireteeeeeeeserrreeeeeeeeesannreneeeas 44
5.3.3 Data StOrage s, 44

6 Tampere pilot site SPeCIfiCities....ccccccrremriirieiiiiriirre e e eeee e s e ne e s e e nanes 46
6.1 Architecture design rationale.......ccceiveiieiiiciiii e 46
6.1.1 Non-functional reqUIreMENTS........ceiiiiiiieieiiie e sraee s 46
6.1.2 DeSigN ratioNale.....cccc e e e 47
6.2 Global @rchiteCtUIE..c..ci i 47
6.3 ArchiteCture COMPONENTS.......uiiiiiiiie e ettt e eeee e e rre e e e rtr e e e e eabae e e e baee e enres 48
6.3.1 Data upload COMPONENTSiviiiciiiieeiiee et e e e rrae e e e sbaee s 48
6.3.2 Data processing COMPONENTSuuuiiiieeeiiriiiiiieeeeeeesrirrrreeeeesssserreeeeeessssssseneeees 48
6.3.3 Data StOrage cooeei i, 49

2 Y/ 1-Jo) 11 (o] XY} =T o 1= o Lo A = S 51
7.1 Architecture design rationale.......c.ceeieiieeiiciie e 51
7.1.1 Non-functional reqUIreMENES.........eiieciiieiiiiie e e seaee s 51
7.1.2 DeSigN ratioNal@.....ecc e e et enrane s 54
7.2 Global @rchiteCTUIE..c..ci i 54
7.3 Components arChit@CUIEcooccieiiiiiiee ettt e e e ebee e e e ree e e e 55
7.3.1 Data upload COMPONENTEScviiiciiieieiiie et et e e e e raae e e e saeaeee s 57
7.3.2 Data processing COMPONENTS ...c.uuuiiiiieeeeiriiiiiiteeeeeeessirrreeeeessssssrrreeeesssssssnsseseeees 58
7.3.3 Data stOrage cooeeeiiiee e, 60

8 Centralised Test Server architecturecccevveiiiiiieiiiiinieininieieinieieieeeieeeeeeeeeeeeeeeee. 61
8.1 Architecture design rationale........cccueiieciiii i 61
8.1.1 Non-functional reqUIrE€MENTS.......ccuueiiiiiieieeiiiee et e e 61
8.1.2 DeSigN ratioNale.....uuiiiiciiie et e e e e 62
8.2 Centralised Test Server architeCture........covieiieiiieeeeeeeee e 62
8.2.1 FUNctional deSCriplioNccccuiiiieiiiiee e e e e 63
8.2.2 HMIINTEITACES ...eeeeiitieteeteetee ettt sttt st e s 65
8.2.3 REST APl ettt st sttt ettt e b e s s 68
8.3 Centralised Test Server components architecture.........ccccveeeeeeeeecccciiieeee e, 68
8.3.1 Data UPlOoadceuiiiiiiee e e s e e e e e e eannes 68
8.3.2 Metadata PrOCESSINGccuviieiiiieieeiiiee e et e e estee e e sre e e e s ae e e e s nbaeeesabaeeesnteeeeennses 68
T T T D - =) o] - 1= I PP PP PP PP PPPPPPPPPPPPPPPPPRS 68
8.3.4 EVAlUAtOr BIrOWSET ... e e 69
8.3.5 Download COMPONENT.......uuiiiiieeeiectiiee et e e e e eeerrer e e e e e s e e nnrreeeeeeeeeennnnes 69
TS T ST @ LW =T o VA o0 1'0] o Yo =] o | A 69
8.3.7 Upload evaluation resuUltS.........ceevcuieiiiiiiiieccieececee et e 69

8.3.8 MoNitor, TAsk MANAGENcoeiiiiieeeieee e e rae e e bae e e 69

AUTOPILOT

L T 7 T Vo [¥ o o N 70

AUTOPILOT

List of Figures

Figure 1: AUTOPILOT global system coONteXt VIEWceeeeciiiiiiiiiee et 12
Figure 2: Pilot Site Test Server generic SYStEM VIBW.......ccccvuiieeeeiieeeeiiieeeeeeieeeeecieee e esveee e 13
Figure 3: Centralised Test Server generic SyStem VIEW......ccceeevcvieeeiciiee et 14
Figure 4: Versailles Pilot Site Test Server architectureccooceeveeriienriee e, 19
Figure 5: Global overview of oneM2M resource tree for Versailles PS........ccccoevveeiivceeeinnen. 21
Figure 6: Structure of Parking Slots Data for Versailles PSccoccvvvivieeiiiciei e 21
Figure 7: Versailles AE_VEHICLES hierarchyccccceeoiiiiiiiiiiicciee et 23
Figure 8: Versailles AE_PARKINGSLOTS hierarchyccccceeecueeiiiiiieeiiiiiee e eeee e 23
Figure 9: Versailles AE_CHARGINGSPOTS hierarchy......cccccceeieeceeeiiiiieeeeieeeeesieee e e 24
Figure 10: Versailles URBAN_DRIVING Application ENtity.....ccccccceeiiivieeiniieeeeecieeeccieee e 24
Figure 11: Versailles AE_URBAN_DRIVING CONTINEISccvviiiiiiieeieiiieeecieee e eeieee e esveee e 24
Figure 12: Versailles AE_URBAN_DRIVING hi€rarchyccccceeeeeceeeiiiiieeescieeseeeieee e eeieee e 25
Figure 13: Test data collection and pre-processing on PS Versailles........ccoceveeviieeivcieeneennen. 26
Figure 14: Test data sources and flows in PS Versailles.........ccccccveeieiiieeicciiee e 26
Figure 15: Data storage means onthe French PS..........coooiiii e 27
Figure 16: loT platforms and services in the Brainport pilot site........cccceeeecireeeiciee e, 32
Figure 17: High-level architecture of the Brainport Pilot Site Test Server........cccocceeeevveeenneen. 32
Figure 18: Brainport PSTS web interface on https://adal.tno.nl/autopilot..........cccceuvennenn. 33
Figure 19: Brainport PSTS web interface for data uploadingccccceveeeeiiiei e, 34
Figure 20: Brainport PSTS Data processing steps for Automated Data Analysis (ADA)........... 35
Figure 21: Data Management Global architecture at Livorno pilot site.........cccccoeeeeeiveeenneee. 39

Figure 22: Data tree structure of loT platform at Livorno pilot site (TCC and RSUs virtual entities) 41
Figure 23: Data tree structure of loT platform at Livorno pilot site (NB-loT DATEX2 and Crossroad

(VT (V=Y =T 0 1 Y OSSPSR 42
Figure 24: Data tree structure of loT platform at Livorno pilot site (OBUs virtual entity) 43
Figure 25: Data processing components at Livorno pilot sitecccceecveeiviciei e, 44
Figure 26: Data Three-tier architecture and technologies (Source TIM Internal documentation) at
WYY oY g o T I o] o A=Y 1 T PRSP 45
Figure 27: Tampere pilot site Test Data architectureccccvevecieeiicciee e, 48
Figure 28: Data processing components at Tampere pilot Siteccccccveveveciee e, 49
Figure 29: Architecture of the Vigo Parking Spot Testing Server.......cocccevecveeevccieeeccieee e, 52
Figure 30: Vigo pilot site Test Data archit@Ctureccccevevei e 55
Figure 31: Data Management architecture at Vigo pilot site for urban driving....................... 56
Figure 32: Data Management architecture at Vigo pilot site for AVPcccceeeeiieeieciieeeennnen. 57
Figure 33: Vigo Data Processing COMPONENTS.........uuuviiiereereereeeeereeeeeeeererererrreerererrerr. 59
Figure 34: Centralised Test Server architeCtureooccccviieeeeee e 63
Figure 35: Centralised Test Server COMPONENTSccciiivcciiiiiieee et et e e e e e abaeee s 64
Figure 36: COMPONENTS IQYEIS c.ccneeeeiiiiieee ettt e e e e e e et e e e e e e e s nbr e e e e e e e e eeeanseaeees 64
Figure 37: Schematic StOrage floW.........ooo i 65
Figure 38: CTS HMI SUMIMAIYcciiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeessseseseseseresrsrersrersesrsrsrersrsrmrnne 66
Figure 39: Test Data BUilder HIMI.........oooirii ettt e e evreee e e e e 67
Figure 40: CTS Web application HIMIcoooiiiiiiece et eevrtee e e e e 68
List of Tables

Table 1: DefiNitiONS cooeiieiee ettt ettt e e st e e ba e e naae e sbaeenareenas 11

Table 2: Versailles pilot site design constraintsccceeeeecieiiiiiiee e 16

UT

OPILOT

Table 3: Versailles Pilot site non-functional quality requirements........ccccccveveiecieeericiee e, 17
Table 4: Versailles Pilot site 10T platform requirementscccocveviiecee e 18
Table 5: Versailles pilot site non-functional requirements........ccccceevviieeiiciee e, 18
Table 6: Brainport pilot site design coNStraintscooecciiiiieee e 29
Table 7: Brainport pilot site non-functional quality requirements........ccccccoceviieiieeiniciee e, 30
Table 8: Brainport pilot site 10T platform requirementscccoceeeeeiiee e 30
Table 9: Brainport pilot site non-functional requirements........ccccceeeeieeeeccciee e, 31
Table 10: Livorno pilot site design CONSTraintsccccoeeiieiieiiiiiiee e e 37
Table 11: Livorno pilot site non-functional quality requirements..........cccccceeeeecieeeicciiee e, 37
Table 12: Livorno pilot site 10T platform requirements.........ccccccveeiieiieeecciee e 38
Table 13: Livorno pilot site non-functional requirements..........ccccceeeeiieeeeciee e 39
Table 14: Tampere pilot site design CoNStraiNts........ccceeiieiiiiiiciiee e 46
Table 15: Tampere pilot site non-functional quality requirements...........ccccceeeecieeeeciiee e, 46
Table 16: Tampere pilot site 10T platform requirementscccoceeeeevieeeecciee e 47
Table 17: Tampere pilot site non-functional requirements..........cccccccveeeeciieeeccciee e, 47
Table 18: Vigo pilot site design CoONSLraintscccveiiiieiiiiiiieeee e e 51
Table 19: Vigo pilot site non-functional quality requirements.........ccccceeeeecieeiicciee e, 52
Table 20: Vigo pilot site 0T platform requirements.........cccceeeeeeeecciiiieee e, 53
Table 21: Vigo pilot site non-functional requirements........cccccceeeeeciiieeee e, 54
Table 22: Vigo pilot site non-functional requirements of the Parking Spot Service................ 54
Table 23: Vigo Watson 10T Platform settings......cccceveiieeiiciiei et 58
Table 24: Centralised Test Server design CONStraintsccvcveiecieeiiiciiee e 61
Table 25: Centralised Test Server non-functional quality requirements..........ccccveveiveeeennnen. 61
Table 26: Centralised Test Server non-functional requirements........cccceeeecvveeeiecieeecciiee e, 62

UTOPILOT

Executive Summary

This deliverable D3.7 “Test Data Management Platform Architecture” presents the AUTOPILOT test
data management architectures of the pilot sites, in particular the architecture of the Pilot Sites Test
Servers, and the architecture of the AUTOPILOT Centralised Test Server, all of which will be
implementing the “Data Collection and Integration methodology” defined in deliverable D3.6.

Each pilot site clearly identifies the software constraints (non- functional requirements) that will be
used to define the final architecture and to finally select the solution to be implemented.

D3.7 also gives an overview of the data flows, the data collection processes inside the pilot sites, and
the data uploading and processing into the Pilot Site Test Servers. This document also describes the
software architecture of the Centralised Test Server and the services and interfaces provided. D3.7
describes how the evaluator will upload and share its evaluation result.

In addition, this deliverable serves as the starting point for the software implementation of each
Pilot Site Test Server and of the Centralised Test Server.

10

AUTOPILOT

1 Introduction

1.1 Purpose of the document
This document presents the architecture of the Test Data Management Platform.

Chapter 2 “Test data collection and evaluation system overview” is an introductory paragraph
summarising the principles of the AUTOPILOT project. It describes the global context, gives an
overview of the Pilot Site Test Server principles and of the Centralised Test Server role.

Chapters 3 to 7 “Pilot sites specificities” describe each pilot site’s architecture in detail. The first
paragraph describes the main requirements guiding the architecture and software development. The
subsequent paragraphs detail the architecture and the components of the PSTS.

Chapter 8 “Centralised Test Server Architecture” details the Centralised Test Server architecture. As
for the pilot sites; the requirements, services and components are described. A paragraph is also
dedicated to the interfaces, APl and HMI used to interact with the CTS.

1.2 Intended audience

This deliverable (D3.7) is a public document and therefore, the intended audience for this document
is considered to be anyone that is interested in data collection and data sharing architecture
solutions that could be implemented in large-scale collection and management of test data and
evaluation results.

Within the project, the main intended audience for this deliverable is considered to be all
AUTOPILOT participants involved in the implementation of the tools, the software and data
management system at the pilot site and centralised level and those involved in the technical
evaluation (WP2, WP3 and WP4).

1.3 Definitions

Table 1: Definitions

Terms Definition

Centralised Test Server A centralised server storing and providing access to
test data and evaluation results

Pilot Site Test Servers A collection of servers and tools in charge of data
collection at pilot site level

Test data Data collected during piloting activities according to
requirements defined by WP4

Test data management A collection of tools and servers including

platform centralised and distributed test servers for collection
of test data

11

AUTOPILOT

2 Test data collection and evaluation system overview

This section presents an overview of the test data management system as an introduction to the
description of the architecture of its components.

2.1 Context overview

The test data management platform is used to manage and collect the data produced by operational
tests so that it is available to evaluators.

The platform is composed of several distributed Pilot Sites Test Servers and a Centralised Test
Server.

The Pilot Sites Test Servers (PSTS) are the base elements in responsible for collecting and processing
test data from vehicles and loT.

The role of the Centralised Test Server (CTS) is to manage and store test data uploaded from the
Pilot Sites’ Test Servers, and allow evaluators to access and use this data. The evaluator can also

upload and share its evaluation results with AUTOPILOT partners.

The architecture of the PSTS and of the CTS are guided by the requirements (about data, tools), the
specifications (about tests, evaluation) and the guidelines (about data management) defined in the

document “D3.6 Data collection and integration”.

Evaluator

' Data Analysis

Central Test Server

Pilot Site Test Server
Data Transfer

Data >
Processing T

Figure 1: AUTOPILOT global system context view

Pilot Sites Test Servers interact with the pilot site test environment:

> Each pilot site is in charge of collecting data from vehicles, sensors, loT, data platforms,
environment, etc., while running test scenarios

» Each pilot site parses, filters, cleans and prepares collected data

» Each pilot site transfers log data in common format for evaluation to the Central Test Server

Central Test Server interacts with pilot sites and evaluators

12

AUTOPILOT

» Central server collects, sorts and stores received test data and metadata

Evaluators interact with the Central Server

» Metadata are used to browse and retrieve collected and stored test data
> Evaluators can access and search data in order to analyse and evaluate the project
» Evaluators can store their evaluation results in a dedicated database

2.2 Pilot Site Test Server overview

A PSTS can be described as a workflow composed of the following components:

a data collection system that hands data to the processing components (parsing, filtering, quality
check, enrichment) and a storage component collecting processed data which are made ready for
uploading to the CTS.

Raw Data Upload
Pilot Site Test Server

v

Raw

il

Figure 2: Pilot Site Test Server generic system view

A specific Pilot Site Test Server must collect and store all the data created by a pilot site: contextual
data, acquired data, derived data, aggregated data (optional), and metadata.

General requirements applicable to all pilot sites:

e Each pilot site must ensure the data collection according to the data quality requirements.
e Each pilot site must provide the requested data in compliance with evaluation requirements

13

AUTOPILOT

(time tag, formats, measurements, etc.).
e Data must be provided with its metadata (complete description of test and test data).

e Each pilot site must ensure that loT data remains on the device until it is stored in the platform.
e Concerning data format requirements, data to be sent to the central loT platform must follow a

predefined plan.

e Each pilot site must provide a secure environment for data storage.

e Each pilot site needs to have the necessary tools to check data quality. Automated scripts may
be provided to process large datasets in order to ease and enable post-processing of aggregated

data.

2.3 Centralised Test Server overview

The Centralised Test Server collects data produced by pilot sites and makes it available to evaluators.
Evaluators will be able to download data from the centralised server, and access specific types of
data directly inside the Server (APl REST). The Server will also provide a way to store the results of

the evaluation, and enriched data produced by the evaluators.

Pilot Site

Test Server

Evaluator API

Browser Downloader | Uploader

Central Test Server

Data Results
Storage Storage

Figure 3: Centralised Test Server generic system view

General requirements of the Centralised Test Server:

e Data must be described using additional information called metadata. The latter must

provide information about the data source, the data transformation and the conditions in

which the data has been produced.

e Asthe project will collect several data categories and several data types, several metadata
descriptions must be provided to describe the characteristics of each measure or component

and also how the data was produced and collected.

AUTOPILOT

e The Centralised Test Server will collect all of the Pilot Sites’ test data and metadata required
for the evaluation.

o Before uploading to the CTS, data must be anonymised.

15

AUTOPILOT

3 Versailles pilot site specificities

This section presents the architecture of the Versailles pilot site.
3.1 Architecture design rationale

This subsection presents the rationale behind the global design, i.e. it describes and justifies the
main design decisions. The requirements and constraints define what the project expects from the
architecture.

3.1.1 Non-functional requirements

The system requirements prescribe the architecture at the system level; the components
requirements refine the system requirements for a specific subsystem.

The requirements listed below are the most important non-functional requirements that the Pilot
Sites will comply with (or adhere to) in order to ensure optimal integration in the global AUTOPILOT
project.

3.1.1.1 Design constraints
From an architecture standpoint, a constraint is an architectural design or implementation decision
that has been selected to be treated as if it were a formal requirement.

The following table displays Versailles’ design constraints.

Table 2: Versailles pilot site design constraints

NFRQ-DC-01 loT PS should be able to connect to get data GA
from an loT platform.
NFRQ-DC-02 Data collection PS must be able to collect data stored or D3.6
published in the Sensinov IoT platform.
NFRQ-DC-03 Data collection PS must enable manual collection of test D3.6
data using a hard drive, flash drive, USB
key
NFRQ-DC-04 Data Storage PS Test Server should use a database to D3.6
store test data descriptions.
NFRQ-DC-05 Data Storage PS Test Server should use a FOT database D3.6
to store test data.
NFRQ-DC-06 Storage PS Test Server must have a storage file GA-DMP, D3.6
system.
NFRQ-DC-07 Data Transfer PS Test Server must allow stored test data D3.6
to be sent by ftp to the Centralised Test
Server.
NFRQ-DC-08 Test Data PS must send data that are compliant to D3.6 decision
Interface the provided description reused at PS level
NFRQ-DC-09 Test Server PS Test Server should provide an API for D3.6
Interface Versailles Test Data uploading
NFRQ-DC-10 Test Data Pilot site should display the status of the D3.6 reused at PS
Monitoring test data upload. level
NFRQ-DC-11 Data Format & Vehicle data must be stored in a human D4.1 & D3.6
Data Model readable format and must follow the

16

AUTOPILOT

WP4.1 parameter naming rule, parameter
type and parameter quality constraints
NFRQ-DC-12 Data Format & GPS data must be stored in a human D4.1 & D3.6
Data Model readable format or standard format and
must follow the WP4.1 parameter naming
rule, parameter type and parameter
quality constraints
NFRQ-DC-13 Data Format & loT data must be stored according to an D4.1 & D3.6
Data Model agreed data model and data format
NFRQ-DC-14 Data model CAM, DENM and SPAT must be stored in D4.1 & D3.6
agreed data format and data model: ITS
G5
NFRQ-DC-15 Networking PSTS must be connected to the Internet D3.6
3.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:
- Performance and Scalability requirements
- Availability and Reliability requirements
Table 3: Versailles Pilot site non-functional quality requirements
NFRQ-QR-01 Data Interface PS Test Server must send the Test Data D3.6
according to interface defined by CTS (tar
file and description file)
NFRQ-QR-02 Data Storage / PSTS must provide a secured storage and D6.9, D3.6
Backup backup to avoid data loss.
NFRQ-QR-03 Data Storage PSTS must provide enough storage space. D3.6
NFRQ-QR-04 Data interface Pilot site must provide all mandatory D4.1 and D3.6
parameters for Urban driving, Car sharing
and Platooning
NFRQ-QR-05 Data Storage PS Test Server must store loT, vehicle and D4.1
survey data as they are provided
NFRQ-QR-06 Data All provided data must be easily identified D4.1 & D3.6
identification by station ID and application ID
NFRQ-QR-07 Data All the provided data must be clearly D6.9,D4.1 & D3.6
Identification identified with metadata and
timestamped
NFRQ-QR-08 Data All PS Versailles data sources must be D4.1 & D3.6
synchronisation synchronised
NFRQ-QR-09 loT Data Model PS Test must provide loT data in the right D4.1 & D3.6
& Data Format data model and the right data format
NFRQ-QR-10 Vehicle Data PS Test must provide Vehicle data in the D4.1 & D3.6
Model & Data right data model and the right data
Format format
NFRQ-QR-11 Surveys Data PS Test must provide Survey data in the D4.1 & D3.6
Model & Data right data model and the right data
Format format

AUTOPILOT

3.1.1.3

loT platform requirements

This section presents the requirements related to the loT platform.

[Note that these requirements are mostly concerning what is expected from the loT platform.]

Table 4: Versailles Pilot site loT platform requirements

NFRQ-IOT-01 Platform The loT platform must be available when D2.3 & D3.2
Availability running test sessions. (M19)
NFRQ-IOT-02 Platform The loT platform must remain available D3.2
Availability after test sessions for data
collecting.(M36)
NFRQ-IOT-03 Platform feature The loT platform must provide pub/sub D3.2 & D3.6
and discovery mechanism
NFRQ-I0T-04 loT Platform The loT platform must provide standard D2.3
standard oneM2M implementation
NFRQ-IOT-05 | Platform Storage The loT platform must provide storage D3.6
Capabilities means until data are collected by the pilot
site.
NFRQ-I0OT-06 Data logging The loT platform must provide logging of D4.1
events.
NFRQ-I0T-07 Data The loT platform must be synchronised D4.1
synchronisation with any device or vehicle of the
Versailles PS.
NFRQ-I0OT-08 Data The loT platform must add a time stamp D4.1
synchronisation upon data/measure reception.
3.1.1.4 Other non-functional requirements
This section includes:
- Security requirements
Table 5: Versailles pilot site non-functional requirements
NFRQ-NF-01 Data privacy All collected data including (surveys) must D6.9

be anonymised before storage.

3.1.2 Design rationale

The design decisions are guided by the following use cases of the PSTS:

- Uploading data from Versailles pilot sites
- Browsing, searching data
- Storage of various type of data
- Upload tasks monitoring
- Users and profiles management
- Downloading data

18

AUTOPILOT

- Selecting and sending data to the CTS

3.2 Global architecture

This section presents the essentials of Versailles pilot site system architecture, including main API
components, services and functionalities.

Pilot Site
leader

Figure 4: Versailles Pilot Site Test Server architecture

3.3 Components architecture

This section presents the detailed components architecture.

3.3.1 Data upload components

This section describes the main data collection components that will be deployed to acquire PS test
data. It is not about the data collection by the devices, but how devices, platforms and other
sources’ data are uploaded to the Test Server Platform.

The following list summarises the collected and uploaded data, and describes the types of data
format and the container file type:

e Vehicle data (CAN): JSON file(s) containing the parameter list agreed with WP4

e CAM data: ASCIl file containing ETSI CAM encoded as XER encoding rules, and as UPER
encoding rules

o [P and ARP packets: Pcap file containing all CAM and other ETSI messages on 802.11-OCB
and all IP and ARP messages

e |oT data: JSON files compliant to oneM2M data containing the data related to each use case

3.3.1.1 loT platforms

Following the oneM2M standard, platforms implementing it act as a CSE (Common Services Entity)
and expose a set of functions (data storage, discovery, etc.). Data generated by devices and stored in

19

AUTOPILOT

the platform can then be consumed by applications depending on the provided service. In order to
make data available to other applications, each application can store the generated outputs in the
oneM2M platform. Therefore, for the evaluation, PSTS can be considered as an Application Entity by
the oneM2M platform that has the rights to access to all stored data.

Interactions with the platform are based on the REST architectural style in order to facilitate the
development of services and increase interoperability with devices. This architectural style considers
each physical or logical entity as a resource having a remotely accessible representation. Each
resource is uniquely addressable via a Uniform Resource Identifier (URI). For the interaction with the
oneM2M platform, HTTP protocol can be used to manage resources.

For data collection, oneM2M standard defines different procedures:

- Request/Response: the requester sends a request to the platform in order to retrieve a
specific resource. Using HTTP protocol, the request is a GET request with the URI of the
requested resource, and the returned response contains the representation of the
requested resource;

- Subscription/Notification: the requester subscribes to the resources collection in order to
track changes (e.g. creation of a resource) in the oneM2M platform. The requester creates a
specific resource called subscription in the tracked collection. This resource contains the
address of the subscriber. In the case of a resource creation, the oneM2m platform sends a
notification to the subscriber containing the representation of the created resource;

- Discovery: the requester sends a discovery request that allows discovering resources
residing on the oneM2M platform. The discovery procedure is based on a retrieve (GET
through HTTP protocol) request where the URI includes the root resource from where the
discovery begins. The result of the request is a list of all child resources under the root
resource. When the filterCriteria parameter is specified in the URI, the result is reduced to all
specific child resources under the root matching the filterCriteria condition.

For the evaluation procedure, the subscription/notification procedure can be used when the PSTS
requires data in real-time. In this case, in order to get data stored from all devices and services in
oneM2M platform, the PSTS shall create the subscription resource and specifies the endpoint where
to receive notifications in all collections. Otherwise, if there is no requirement regarding receiving
resources in real-time, the PSTS can use the discovery procedure to retrieve a set of data matching
specific conditions. Before data ingestion and processing, collected resources are stored on a local
server.

For structuring resources, oneM2M standard defines a resource tree. For Versailles PS, the global
resource tree regarding the car-sharing service is depicted by Figure 5. The structure is based on the
separation of resources by data and service types (parking slots, charging spots, vehicles, car sharing,
etc.).

20

AUTOPILOT

server

acp_admin
acp_reg
acp_AE_CARSHARING
acp_AE_VEHICLES
acp_AE_PARKINGSLOTS
acp_AE_CHARGINGSPOTS
ae_admin
AE_CARSHARING
AE_VEHICLES
AE_PARKINGSLOTS
AE_CHARGINGSPOTS
ASAR_PARKINGSLOTS
ASAR_CHARGINGSPOTS
ASAR_VEHICLES
ASAR_CARSHARING
asar_admin

Figure 5: Global overview of oneM2M resource tree for Versailles PS

Considering the global structure of the resources tree for the Versailles PS, the parent resource for
parking slots data (Figure 6) is AE_PARKINGSLOTS. This resource contains a first level of containers
related to each parking (e.g. CNT_PARKING-1). Then, a second level related to Parking slots (e.g.
CNT_SLOT-101). The third level of containers is DATA containing slots data (CIN resources).

server
acp_admin
acp_reg
acp_AE_CARSHARING
acp_AE_VEHICLES
acp_AE_PARKINGSLOTS
acp_AE_CHARGINGSPOTS
ae_admin
AE_CARSHARING
AE_VEHICLES
AE_PARKINGSLOTS
CNT_PARKING-1
DESCRIPTOR
CNT_SLOT-103
CNT_SLOT-102
CNT_SLOT-101
DATA
fcin_502820508826562157)
cin_9151114581033273720
cin_8613996006220732787

Figure 6: Structure of Parking Slots Data for Versailles PS

For instance, in the case of an occupied slot, data can be as follows:

{
"SlotStatus": "OCCUPIED",

"LicensePlate": "AP-001-VE"
}

Under the DATA container, each new data is stored as a CIN (Content Instance) resource in the
oneM2M platform. For the previous example, the CIN resource can be as depicted bellow where

21

AUTOPILOT

CON attribute contains the raw data:

"m2m:cin": {
"rn": "cin_5634606628112954",
"ty": 4,
"ri": "/server/cin-5634606628112954",
"pi": "/server/cnt-7621087546889705752",
"ct": "20180328T145038",
"It": "20180328T145038",
"et": "20180328T145038",
"st": 0,
"cnf": "application/json",
"cs": 39,
"con": "{\"SlotStatus\": \"OCCUPIED\",\"LicensePlate\": \"AP-001-VE\"}"

}

When the Subscription/Notification procedure is used, the subscriber receives a notification for each
new data. For instance, in the case of new parking slot data (e.g. parking 1, slot 101), the notification
is as follows:

{
"m2m:sgn": {
"nev":
"rep": {

"m2m:cin": {

"rn": "cin_5634606628112954",

"ty": 4,

"ri": "/server/cin-5634606628112954",
"pi": "/server/cnt-7621087546889705752",
"ct": "20180328T145038",

"It": "20180328T145038",

"et": "20180328T145038",

"st": 0,

"cnf": "application/json",

"cs": 39,

"con": "{\"SlotStatus\": \"OCCUPIED\",\"LicensePlate\": \"AP-001-VE\"}"

"sud": false,
"sur": "/server/server/AE_PARKINGSLOTS/CNT_PARKING-1/CNT_SLOT-101/DATA/SUBSCRIBER "
}
}

The data hierarchies, relevant for applications consuming the data from the OneM2M platform, are
described below:

22

AUTOPILOT

AE_VEHICLES

CNT_VEHICLE-1

N
A J ‘ E

Figure 7: Versailles AE_VEHICLES hierarchy

AE_PARKINGSLOTS
CNT_PARKING-1

CNT_SLOT-1

CNT_PARKING-n

Figure 8: Versailles AE_PARKINGSLOTS hierarchy

23

AUTOPILOT

AE_CHARGINGSPOTS

CNT_PARKING-1

CNT_SPOT-1

CNT_PARKING-n

Figure 9: Versailles AE_CHARGINGSPOTS hierarchy

Urban driving

The parent resource for the urban driving slot is AE_URBAN_DRIVING. The URBAN_DRIVING
Application Entity consists of AE_URBAN_PEDESTRIAN and AE_URBAN_BICYCLE containers as it is
shown below.

“u SONSINOV

Figure 10: Versailles URBAN_DRIVING Application Entity

The AE_URBAN_PEDESTRIAN will contain the subscriptions of pedestrians and the
AE_URBAN_BICYCLE container will contain the subscriptions of bicycles respectively. An example of
a subscription is shown below.

s Sensinov

Figure 11: Versailles AE_URBAN_DRIVING containers

24

AUTOPILOT

After a successful subscription, the data will be sent in JSON format according to oneM2M API
standard rules. The communication will take place between a pedestrian’s smart-phone and the
oneM2M server for the pedestrian urban driving use case and between the bicycle ECU and the
oneM2M server for the bicycle case. The hierarchy of the urban driving application entity is depicted
in Figure 12.

BICYCLE_1234567891114

BICYCLE_1234567892344

E Ig
'. II

CNT_PEDESTRIAN

PEDESTRIAN_1234556852344

"

Figure 12: Versailles AE_URBAN_DRIVING hierarchy

3.3.1.2 Vehicle data
All the necessary vehicle data will be published at runtime and available in the OneM2M platform
(vehicles application entity).

3.3.1.3 Surveys data

The tool to be used on the French pilot site has to be decided by WP4. SoSci could be used to create
the Versailles’ user acceptance tests. The results will be collected and uploaded to the SoSci Cloud
Platform as a consolidated .csv file. This file can be downloaded later from the SoSci Cloud Platform
through a sign in process. Then, this .csv file can be uploaded to Versailles Pilot Site Test Server
manually and be available for further data analysis. All data collection and storing will comply with
the General Data Protection Regulation (GDPR), EU016/679".

3.3.1.4 V2X messages data

In the VFLEX vehicle prototype there are three distinct means of collecting and uploading data to the
cloud (PSTS). Firstly, the CAM messages generated by the PC-AD entity in VFLEX are sent to the
cloud. These CAM messages are formed by the PC-AD by using, among others, data that circulates
on the CAN network(s) in the car. Some of the CAN parameters may be logged as part of the CAM
message logging in the OneM2M platform.

The CAM messages sent to the cloud are formatted according to CAM specification, and using XER
encoding rules. Secondly, the IP-OBU entity in the VFLEX collects the data packets circulated on
Ethernet and on 802.11-OCB links (CAM messages, and all IP and ARP messages); this data is stored
in a local file formatted according to the pcap format; the file is captured using the commands tshark

! https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32016R0679

25

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32016R0679

AUTOPILOT

and tcpdump; this file may be sent to the cloud as well, depending on the requirements. Thirdly, a
special entity in the vehicle collects more data in the car.

3.3.2 Data processing components

The purpose of this paragraph is to detail the raw data processing: data preparation, quality check,
filtering, analysis, enrichment, metadata generation and storage.

Note that at PSTS level, only mandatory quality check and filtering are performed. More advanced
filtering, processing, calculation and enrichment treatments are performed by the technical
evaluation task on data gathered from the Centralised Server.

The Figure 13 outlines the process that will be followed by the Versailles PS:
The data collection process will collect and group all test data related to a specific test scenario or
test session. Then data are described and annotated. Finally, according to the test data interface

defined in the data collection methodology, a Test Data archive is created and stored.

Depending on the type of data collected, several processing tasks will be performed in order to
provide clean and ready to use data to the evaluator.

Data Preparation

Figure 14: Test data sources and flows in PS Versailles

26

AUTOPILOT

3.3.2.1 Analysis
The data stored in the pilot site will be compliant with the OneM2M model for the 10T data and the
ETSI ITS-G5 standard for V2X data.

3.3.2.2 Quality check
The aim of data quality is to check that the data can be useful and ready for processing. This is done
by checking the following items:

e Assessing and quantifying missing data

Controlling data values and units of measure

Checking that all the data are synchronised

Checking that the data are timestamped

Checking that the data are compliant to the predefined data model and data format
Checking that the data are clearly identified by station id and application id

3.3.2.3 Processing and enrichment
At the level of PS site, processing and enrichment is limited to providing mandatory data. There is no
calculation of one of the following: Events detection, Situation, indicator calculation.

3.3.2.4 Metadata definition
At the level of PS Versailles, Metadata definition will be limited to providing a complete description
of the Test Data APl described in D3.6.

3.3.3 Data storage

3.3.3.1 Raw data storage
There is no raw data storage. Refer to section 3.3.1.1 IoT platforms.

3.3.3.2 Processed data storage
Processed data will be stored and indexed in a PS test server.

The Figure 15 represents the data storage means on the French pilot site:

T ==\

Raw Data, | Metadata 1o

Logs, Database
Other Dats t———
Storage ———

orage Test data file

Data Storage

—— _—

FOT Databose

-~
Storage

Figure 15: Data storage means on the French PS

The PS test server will contain two distinct types of storage:
e A database and a file system for raw data, logs and derived data

27

AUTOPILOT

e A database (FOT optional) for test data

The “Descr. and Metadata Database” shown in Figure 15 contains all the information extracted from
the “description.xml” (test data metadata) described in D3.6.

28

AUTOPILOT

4 Brainport pilot site specificities

This section presents the architecture of the Brainport Pilot Site Test Server (PSTS). The PSTS is the
Automated Data Analysis (ADA) server environment from on https://adal.tno.nl/autopilot. All data
from the pilots of Use Cases for Platooning, Car Rebalancing, Highway Pilot and Automated Valet
Parking will be uploaded to the ADA repository. The pre-processed data will also be accessible from
ADA and made available to the Central Test Server described in section 8.

The architecture, rational and requirements are based on the common approach to data logging,
analysis and evaluation for the use cases of the PSTS, as specified in the
“AUTOPILOT_CommonLogFormatDescription_extension”, which is an extension of the
“InterCor_CommonLogFormatDescription”. Documents and related specification documents are
provided on ProjectPlace 2.

4.1 Architecture design rationale

This subsection presents the rationale of the global design, i.e. it describes and justifies the main
design decisions. The requirements and constraints define what the project expects from the
architecture.

4.1.1 Non-functional requirements

Requirements below are the most important non-functional requirements for the Brainport PSTS in
order to ensure an optimal integration into the global AUTOPILOT project.

4.1.1.1 Design constraints
Table 6: Brainport pilot site design constraints
NFRQ-DC-01 Data PSTS should provide a facility to manually and D3.6
uploading automatically upload log data in common formats
NFRQ-DC-02 | Common Log PSTS should be able to manage log data in D4.1
Formats predefined common formats, as defined in section
3
NFRQ-DC-03 | Structured PSTS only allows uploading of structured log data, D3.6
data as defined in section 3.
NFRQ-DC-04 | Data Storage PSTS should use a database to store test data D3.6
descriptions
NFRQ-DC-05 | Data access PSTS should provide access to the pre-processed D3.6
data
NFRQ-DC-06 | Data access PSTS should provide access to the pre-processed D3.6
data for uploading to the Central Test Server
NFRQ-DC-07 | Data quality | All applications providing logging, and all log data D4.1
provided, shall be time synchronised

2

specifications,

“AUTOPILOT_CommonLogFormatDescription_extension” and
ProjectPlace: [

related

Pilot sites | Brainport |

https://service.projectplace.com/pp/pp.cgi/r1663184828

descriptions
Evaluation

and

29

https://ada1.tno.nl/autopilot
https://service.projectplace.com/pp/pp.cgi/r1663184828

AUTOPILOT

NFRQ-DC-08 | Data quality | All data shall be logged with timestamps in UTC in
milliseconds or higher precision.

NFRQ-DC-09 | Data quality | Only log data of the same message type can be 3
provided in a single log file

NFRQ-DC-10 | Data quality | All stations, loT devices, loT services, 10T platforms 3
and applications have a project-unique identifier

4.1.1.2 Architecture quality goals

This section presents two kinds of quality requirements:
- Performance and Scalability requirements
- Availability and Reliability requirements

Table 7: Brainport pilot site non-functional quality requirements

NFRQ-QR-01 | Data Storage PSTS must provide enough storage space. D3.6
NFRQ-QR-02 | Data Storage | PSTS must provide a secured storage and backup to D6.9, D3.6
/ Backup avoid data loss (RAID1).
NFRQ-QR-03 Data All provided data must be easily identified as D4.1 & D3.6
identification specified in the common formats, as defined in >
4.1.1.3 |oT platforms requirements
This section presents the requirements related to the loT platforms.
Table 8: Brainport pilot site IoT platform requirements
NFRQ-IOT-01 | Platform feature | The loT platform must provide pub/sub D3.2&D3.6
and discovery mechanism
NFRQ-I0T-02 Platform The loT platform must provide storage D3.6
Storage means until data are collected by the Pilot
Capabilities Site.
NFRQ-I0T-03 loT Platform The loT platform(s) must provide data D2.3
standard logging of the standardised common loT
messages as defined in Task 2.3
NFRQ-I0T-04 Data Logging The loT platform(s) must provide unique D4.1
identifiers with every loT message as
defined by the loT device that generated
the loT message
NFRQ-IOT-05 Data The loT platform must implement the
management “Store and Share” paradigm with data
historisation

4.1.1.4 Other non-functional requirements
This section includes:
- Security requirements

30

AUTOPILOT

Legal requirements

Table 9: Brainport pilot site non-functional requirements

NFRQ-NF-01 Security The PSTS must implement some levels of

assurance for authentication

NFRQ-NF-02 Legal The PSTS should meet GDPR D6.7

requirements asset in AUTOPILOT

NFRQ-NF-01 Data privacy All collected data including (surveys) must D6.7

be anonymised before storage.

4.1.2 Design rationale

The design decisions are guided by the rational for the approach in section 3:

Logging is primarily collected and stored for validation and evaluation.

Only structured logging is accepted and stored.

Raw sensor data is not stored, only detections or interpreted data.

Logging, storage and pre-processing is supported for common logging as defined in section 3
and D4.1.

Logging is provided in files containing log items, such as loT messages, of the same message
type.

Logging distinguishes logging of communication, vehicle data, application and control logic.
For communication logging either the complete messages are logged as specified by the
communication standard, or the message identification information is logged.

Logging is uploaded and pre-processed per use case and per session for validation or pilot
test run.

The Automated Data Analysis (ADA) toolset is applied for processing the log data. ADA
contains predefined scripts, as described in the following subsections.

The results of ADA processing are provided together with the processed log data in a data
base per experiment. This database can be uploaded by the CTS and partners such as the
evaluators, for further data analyses and evaluations

4.2 Global architecture

The Brainport pilot site implements a distributed approach to data management. The use cases will
use different loT platforms, loT devices, cloud services and automated vehicles. Figure 16 shows
some of the types of platforms, devices and services as an example. Data will be collected and stored
in multiple data management systems before uploading the data to the PSTS.

31

SUTOPILOT
Car Car Valet Public
Tl e Wester
» L 1 I a

\

~ ¥ 4
— E Pilot Site [oT E Pilot Site JoT ol
T v
] [~
& - x
] rosasieror | woutsideror |

) | S R y { [

v + {(Autonomous Driving + +

» @ In-Vehicle loT gb In-Vehicle loT

Figure 16: loT platforms and services in the Brainport pilot site

Different loT platforms are used in various combinations for the different use cases. The Sensinov
oneM2M platform as the central loT platform, and loT Watson, FiWare and Ocean are used as
federated loT platforms. Cloud services and platforms are connected for example for Traffic
Management and Control, Platooning service, Highway Pilot anomaly detections, HD Map and ADAS,
crowd monitoring, parking spot detection, car and ride sharing, and route planning. Different
automated and cooperative vehicle platforms are used, each with specific implementations of in-
vehicle loT platforms.

Figure 17 shows a high level architecture for collecting, uploading, pre-processing and analysing log
data from vehicles, vehicle loT platforms, (federated) loT platforms, loT devices and cloud services.
Log data relevant to evaluations are converted into common log formats and uploaded to the PSTS.
The Brainport PSTS consists of a PostgreSQL data base management system, that is structured in
data bases per use case and pilot or test session.

Repasitory
https://adal tno.nl/autopliot

<Test Session>
PostgreSQL

| 10T Device = loT Platform — e

Automated Data Analyses

& 3 Comverter
' } . -
In CSV, UPER, XER |
* Data quality reports ‘

i . o Indicator calculation |
\ Upload site All Sessions:
i 'y

|
U SG5CU loT platform 1

| Data gualit lidatio! B hsi
| ata guality validation | Detam ploh& ‘
| regorts =

Situations & Events

——s o PostgreSQL dump -
AD function Automatic uploads to L - ¢ Vehicle tracks
httgs://adal tno.nl/autopiot/uplcad * Events &actlons
I ¢ Situations
Seo + indicators

Figure 17: High-level architecture of the Brainport Pilot Site Test Server

Once all data from a single test session is uploaded, including the data from all vehicles, 10T devices,
loT platforms and cloud services involved in this test session, pre-processing is executed. The pre-

32

AUTOPILOT

processing consists of one or more data analysis steps such as data quality validation or sanity
checks, detection of situations and events, and the calculation of indicators. The scope and output of
the pre-processing may differ per use case, and subject alignment with (technical) evaluations in
work package 4. All outputs from the PSTS pre-processing will be provided to the CTS in the form of
PostgreSQL database dumps, including pre-processing log data, data analyses results, data quality
reports, vehicle tracks, application events and actions, situations and generic indicators.

4.3 Components architecture
4.3.1 Data repository

The PSTS is accessible to partners via a web interface on https://adal.tno.nl/autopilot/. Figure 18
shows the home page.

AUTOPILOT

AutoPilot

This is the entry point of the TNO Ceniral Repository for the AutoPilot (http //auiopilot-project.ew).

Data Provisioning

The TNO Central Repository collects the data from on-board units, loT platforms and road side stations provided by
participants. An explanation of the procedure to upload data and trigger processing is given here.

Experiment Results

Each session is defined as a single experiment for analysis. An experiment includes the analysis of communication,
applications and HMI events within a single on-board unit, as well as the interactions and communication between
on-board units and road side stations. The analysis results are accessible in two alternative ways:

+ By experiment

+ By analysis or format:
o Database
o Animation in Google Earth
o Sanity Checks

Evaluation Results

The repository also provides access to share the results of the analyses and evaluations based on the participants'
data.

A central repository for evaluation is provided at hitps:/adaT ino.nl/autopilot/.

A personal account should be requested from Harry Wedemejern@ino nl.
Naote that this repository only provides read access to the evaluation results.

Contact information: Harry Wedemeijer@tno.nl

TNO (5
N for life m—————

Figure 18: Brainport PSTS web interface on https://adal.tno.nl/autopilot

33

https://ada1.tno.nl/autopilot/
https://ada1.tno.nl/autopilot

AUTOPILOT

4.3.2 Data upload components

The web interface of the repository provides access for uploading log data automatically. The data
provisioning section in Figure 18 links to Figure 19 on the following page which explains:
e The upload process with an example script to upload data automatically from any data
source on the internet.
e Explanation how to organise log data into experiments.
e A section to define the experiment and, once all data of an experiment are uploaded,
trigger the automated processing of the log data for the experiment analysis.

AUTOPILOT

AutoPilot

Data Provisioning

The data from on-board units, 10T platiorms and road side stations is provided by patiopants

Dala s organisad In cirectonas par pamiopant. pol USS C358 aNd Par $85510N of mperiment A directory 15 only ccessitie to the pamicdpant or ownar of the data Proviced data s not
made actessitie 1o ofhers va this poral

Prowding Expenment data
Data can be upioadad aNar every 5835100 or experimant, using 3 HTTP POST with dorm data

The Tollowing |5 an example BASH scngt to upload one file {30gpnoimy_logfia csv) for one sxparment (2016-01-23_Sassion 1)

’ bin/baat
Rl=httpe://adal.tno.nl/eutopilot/uploed/upload file.php

USERIAME »<umernane >
PASSWORD=<psssvord>

EXPERIMENT=Z)128-01-23 Sessionl

¥IlI=/logying/my_logfile.cav
curl -—gser FUSEENAME:SFASSWCED --regquest FOST --form “sxperinents3EXFERIMENT™ --form “decesjs¥ILE" SURL

Ly, you cean add & component name, A separate syb-directory will be greated for each component.

‘
.
§ FIL le.09v
. WD --reguest FOST --form “experiment«iEXFERIMENT™ --20mm "conponentsiCOMEONENT™ --form “cata«§S$FILE™ §URL

For uploading Mles & =ize Ami of 40 MB iz in use Files that exceed this lmil will De rejecied
The réquest will réturn "HTTP 200° on success, and HTTP 4047 on 13lkre, with 3 shod asplanaion of the aror in e 2ot 8. g WTTR/Y 1 404 Fls already 6xiefs
The upioaded loghies are stored in

Figure 19: Brainport PSTS web interface for data uploading

Every pilot site and use case has its own folder structure to organise log data. This folder structure is
only accessible by the use case partners. A partner may also have a separate folder structure. The
log folders are not accessible to other partners.

Log data is organised in experiments. An experiment is a single pilot test sessions or test run. All log
data should be uploaded into a single experiment folder. The web interface allows the uploaded
data to be viewed. The repository does not support sftp to upload or access log data.

4.3.3 Data processing components

Figure 20 shows the data processing flow for Automated Data Analysis (ADA) of the log data for an
experiment. The process consists of six steps that will be explained in the following subsections.

34

AUTOPILOT

A

Logfiles

1
Compliancy check

Non Compliant

2

Quality check failed Quality check
for facilities

3.
Quality check failed Quality check
for applications

Data Quality
report

4
Resampling and
smoothing

Log database

S.

Event detection Event database

Indicators
Indicator calculation

Figure 20: Brainport PSTS Data processing steps for Automated Data Analysis (ADA)

4.3.3.1 Quality check

The first three steps in Figure 20 are data quality checks.

1. The log data is first check on compliance to the parameter and file format specifications in
section 3. This includes the availability of mandatory parameters, valid encoding of message

payloads, value ranges.

2. The sanity and plausibility of basic station or device facilities are checked in the second step.
These include the sanity or plausibility assessment of:
a. Time offsets and time synchronisation between devices, components and logging

units.

b. Vehicle kinematics and the consistency between position, speed and accelerations
from vehicle sensors and control systems, absolute (GPS) positioning systems,

relative positioning systems, and target or object detection systems.

c. Reconstruction of trajectories of devices and vehicles.

d. Communication performance, such as the kinematic data in sent messages, relative
positions of received messages, packet delivery ratios, effective communication
ranges, time delays between generation, sent and reception timestamps.

The sanity and plausibility of application and control logic is checked. Known event locations
are checked against vehicle trajectories to detect every vehicle passing. In the opposite
direction every logged vehicle event is checked for consistency with internal and external
event data. These checks are specific to applications and use cases.

The ADA processing tools do not attempt to detect any missing measurements other than missing
mandatory data. ADA tools do not replenish any missing data.

35

AUTOPILOT

4.3.3.2 Analysis

Step four in Figure 20 can be used to resample and smooth continuous parameters, and inserted as
‘new’ parameters in the repository, to ease further analysis. More often, however, such resampling
is only executed with specific analysis scripts and not inserted into the repository.

4.3.3.3 Processing and enrichment
In step five, events and actions are detected from the logged application and control logic, and from
the vehicle trajectories and vehicle passes detected in step three. Events, actions and situations are
defined per use case and application.

In step six a basic set of predefined indicators are calculated for the events and actions detected in
step five. Indicators that are calculated are, for example, the communication performance
parameters from D4.1 such as communication latency, packet delivery ratio and effective
communication range.

4.3.3.4 Metadata definition
Meta data are provided for the experiments, time periods, involved devices and their trajectories,
events and indicators.

4.3.4 Data storage

Data is stored in PostgreSQL data bases per experiment. Data is stored in the structure defined in
section 3. The data bases used for ADA analysis are not accessible by partners. The resulting
database is provided as a database dump, including all logged data relevant to the ADA processing
and the results of the ADA processing.

4.3.4.1 Raw data storage
Raw data, as mentioned in D3.6, is all logged data received from pilot experiments. All data from a
single experiment is stored in a separate folder on the repository.

4.3.4.2 Processed data storage
Processed data is stored in a PostgreSQL data base per experiment.

4.3.5 Data access

Data access is controlled by access codes per pilot site, use case and partner.

Data can be accessed via the website (Figure 18) in the “Experiment Results” and “Evaluation
Results” sections. The results can be accessed per experiment as database dump file for
downloading and local processing, or in specific views, such as the data quality reports, animations,
result summaries and data plots.

36

AUTOPILOT

5 Livorno pilot site specificities

This section presents the Use Case managed by the Livorno pilot site, and the specific architecture of
the pilot site components.
5.1 Architecture design rationale

This subsection presents the rationale of the global design, i.e. it describes and justifies the main
decisions of design. The requirements and constraints define what the project expects from the
architecture.

5.1.1 Non-functional requirements

Requirements below are the most important non-functional requirements this pilot site will comply
(or adhere to), in order to ensure an optimal integration in the global AUTOPILOT project.

5.1.1.1 Design constraints
From an architecture standpoint, a constraint is an architectural design or implementation decision
that has been selected to be treated as if it were a formal requirement.

Table 10: Livorno pilot site design constraints

NFRQ-DC- Networking PSTS must be connected to the Internet. D3.6
01
NFRQ-DC- Networking PSTS must be connected to the PS VPN with a D3.6
02 static IP address
NFRQ-DC- loT PSTS must be able to send HTTP/GET request D3.6
03 to the oneM2M platform.
NFRQ-DC- loT PSTS must be able to parse the response to D3.6
04 the GET with a function like JSON.parse().
NFRQ-DC- Data collection | PSTS must be able to store the data requested D3.6
05 to the oneM2M platform.
NFRQ-DC- Data collection | PSTS must be able to store the data sent from D3.6
06 devices with local storage (OBU/RSU, etc.) via

FTP.
NFRQ-DC- Data collection | PSTS can enable manual collection of test data D3.6
07 using hard drive, flash drive, USB key
NFRQ-DC- Data Storage PSTS must use a database to store test data D3.6
08 descriptions.
NFRQ-DC- Data Transfer PSTS must allow sending stored data to the D3.6
07 CTS by FTP.

5.1.1.2 Architecture quality goals

This section presents two kinds of quality requirements:
- Performance and Scalability requirements
- Availability and Reliability requirements

Table 11: Livorno pilot site non-functional quality requirements

37

AUTOPILOT

NFRQ-QR-01 Data Interface PSTS must send the Test Data according D3.6
to interface defined by CTS (tar file and
description file)
NFRQ-QR-02 Data Storage / PSTS must provide a secured storage D3.6
Backup and backup to avoid data loss.
NFRQ-QR-03 Data Storage PSTS must provide enough storage D3.6
space.
5.1.1.3 loT platforms requirements

This section presents the requirements related to the loT platforms.

Note that these requirements mostly concern what is expected from the IoT platform. Some of them
will drive the way the platform is used.

The security aspects of oneM2M platform are based on the following features:

- Services and APls oneM2M are exposed with SSL (HTTPS)
- Authorisation mechanism based on credentials (username/password) of a specific user

(tenant)
- Creation of Access Control Policy (ACP) for each Application Entity (AE)

Table 12: Livorno pilot site 10T platform requirements

NFRQ-10T-01 compliance The loT platform must be compliant to D2.3,D3.6
the OneM2M standard - Release 2
NFRQ-10T-02 Network Resources must be identified by URI in D2.3
separate way from IP addressing
NFRQ-10T-03 Network The loT platform should be IP based D2.3
(irrelevant the version, IPv4 or IPV6)
NFRQ-IOT-04 Network The loT platform must be network D2.3
independent
NFRQ-IOT-05 | SW architecture | The loT platform must support the REST D2.3
approach
NFRQ-IOT-06 interoperability | The loT platform interfaces towards the D2.3
applications (REST APIs) should be
compliant with oneM2M standard
NFRQ-10T-07 management loT platform must support full device D2.3,D2.5
and subscription management
NFRQ-10T-08 Protocols The loT platform should implement D2.3
HTTP/COAP/MQTT transport protocols
NFRQ-I0T-09 Data The loT platform should implement the D2.3,D3.6
management “Store and Share” paradigm with data
historisation
NFRQ-I0T-10 Security The loT platform should implement D2.3,D3.6
some levels of assurance for
authentication
NFRQ-IOT-11 | Privacy by design Identifiers used for communication in D2.3,D3.6
the M2M System should not be directly
related to the real identity of either the

38

AUTOPILOT

device or its user.

5.1.1.4 Other non-functional requirements
This section includes:

- Security requirements

- Legal requirements

Table 13: Livorno pilot site non-functional requirements

NFRQ-NF-01 Security The PSTS should implement some levels D1.9
of assurance for authentication
NFRQ-NF-02 Legal The PSTS should meet GDPR D4.9

requirements

5.1.2 Design rationale

This section presents the major design decisions for the Livorno PS.
5.2 Global architecture

This section presents the essentials of Livorno pilot site system architecture, including main API
components, services and functionalities.

RUNTIME in the cloud
))
TS L
p)
2| |,
| ﬂ

] I %“mm PS Test Platform: TIM OneM2M (oT Platform

In-vehicle | RU NTI M E
loT platform | | ‘ ;
‘ : in the vehicle

Figure 21: Data Management Global architecture at Livorno pilot site

5.3 Components architecture
This section presents the detailed components architecture.
5.3.1 Data upload components

The data collection components and raw data acquired are described in the following subsections.

39

UTOPILOT

The focus is about how devices, platforms and other sources data are uploaded to the test server
platform.

5.3.1.1 loT platforms

Since the Livorno PS loT Platform is compliant to the OneM2M standard, it is based on a “Store and
Share” resource-based paradigm. Thus, data produced during the piloting may be made available on
the platform to the other applications, including uploading service of raw data in the PSTS.

The data are downloaded from the loT platform with a customised function that combines REST
methods (notably GET) with filters able to select time intervals, use cases and devices.

The loT raw data are permanently stored in the loT platform and can be accessed and downloaded
any time. The downloaded data after filtering and quality checking are uploaded to the PSTS. No
local storage between these two ICT infrastructures is maintained. The overall operations of data
transferring will be performed by a human operator.

The data inside the PS loT platform are structured according to the resource tree shown in Figure 22,
Figure 23 and Figure 24.

All the devices with a role in the experimentation have a virtual representation on the oneM2M
platform, notably the associated container and sub-container resources have specific attributes.
Those attributes are both metadata describing the digital object itself, and the values of the
variables of that object, which are called “content”.

Every time an loT device publishes new data on the OneM2M platform a new “content instance” is
generated, representing the actual status of that device.

All the “content instances” are stored in the internal database with a unique resource ID. They can
be retrieved from other consumers, including PSTS with simple REST methods (notably GET, see
D3.6).

In the Figure 22, Figure 23, Figure 24 the “label” metadata are represented by blue tags. Those
tokens are used to add meta-information to resources that can be used for example for discovery
purposes when looking for particular resources that one can "tag" using that label-key.

Note that structuring the data, as described here, is essential for loT platform conception and
configuration, and also for applications consuming data published by the devices into the loT
platforms. These inputs must be used as requirements for loT platforms and applications and
represent also a proposal for the semantics for the “smart roads” vertical domain.

40

AUTOPILOT

AE
Livorno_PS

BN

o] ST

B - e —
send OR update OR terminate

[Weter sensors |— £ — T

& — T

Figure 22: Data tree structure of loT platform at Livorno pilot site (TCC and RSUs virtual entities)

41

AUTOPILOT

AE
Livorno_PS

—— NB-IOT_SENSOR#1 |

—— NB-1OT_SENSOR#n |

— DATEX_Il |

—B last event situation

STATUS

L b fullsituation

TRAFFIC_LIGHT

Figure 23: Data tree structure of loT platform at Livorno pilot site (NB-loT DATEX2 and Crossroad virtual entity)

42

AUTOPILOT

Af
Livorno_PS

=

| Vehiclet1
" (With AD functions) S
5 e
: Label
: =
! &
; &
: - -
[(With AD functions)
: S &4
i engine speed
= o
|] oeed imt]
| e ™
i fithowt A hunctions))
| N & T
= e] L=]
| e | roole |
{With OBU)

Figure 24: Data tree structure of loT platform at Livorno pilot site (OBUs virtual entity)

5.3.1.2 Vehicle data

The vehicle data are stored during the piloting in the local in-vehicle 10T platform. In order to
overcome the storage limitations of the OBUs, the logging is performed in a binary format so called
“protobuf”.

At the end of a piloting session a specific APl will decode the logs and send them to the PSTS in JSON
format using SFTP transfer over the PS VPN.

5.3.1.3 Surveys data
For the survey data, the Livorno PS will use the tools and methods indicated by WP4, once available.

5.3.1.4 V2X messages data
The V2X message are generated and collected by both OBUs and RSUs: the former will store the
collected CAMs and DENMs locally inside the in-vehicle loT platform, the latter will publish at
runtime the DENM and CAM messages on the oneM2M platform. At the end of the piloting session
V2X messages from both kinds of ITS stations will be uploaded to the PSTS, according the
abovementioned procedures.

AUTOPILOT

5.3.2 Data processing components

In Figure 25 the raw data processing is shown: the different sources of raw data are filtered
according to device ID, UC and time interval, then data quality is checked: only the data that are free
from errors or inconsistencies are uploaded to the PSTS. The next step involves metadata generation
using the tools provided by AKKA and finally the uploading to the CTS, where the data are stored and
available to the evaluators.

Filtering,

- loT Platform data
- Vehicle data Quality » Upload to »
- V2X messages check, PSTS

- Survey Processing

Figure 25: Data processing components at Livorno pilot site

5.3.2.1 Analysis

The data are filtered according to time intervals, use cases and devices. The data received from the
oneM2M platform with GET methods are parsed with a JSON.parse() function in order to convert the
“con” field in JSON objects array without ‘\’ characters.

5.3.2.2 Quality check
The quality check operations will be performed manually before the uploading on the PSTS: the
operations will include:

Assessing and quantifying missing data

Controlling data values and units of measure

Checking that the data dynamic over time

Guaranteeing that data fulfils specific hypotheses requirements

5.3.2.3 Processing and enrichment
The processing activities will include:

e Events detection
e Pl calculation
e Data aggregation

5.3.2.4 Metadata definition
Metadata required by the CTS database are produced using the API provided by AKKA.

5.3.3 Data storage

In this section data storage components are described: filesystems, databases and data organisation.

5.3.3.1 Raw data storage
loT raw data published on the TIM oneM2M platform are stored on a cluster of servers with
MariaDB, so called MariaDB Galera Cluster (see Figure 26). It is fully read-write scalable, comes with
synchronous replication, allows multi-master topologies, and guarantees no lag or lost transactions.
Some of its features & benefits are listed below:

- Synchronous replication

44

AUTOPILOT

- Active-active multi-master topology

- Read and write to any cluster node

- Automatic membership control, with failed nodes dropped from the cluster
- Automatic node joining

- True row-level parallel replication

- Direct client connections, native MariaDB/MySQL look & feel

S

icon-vip

Front-end / , , J
1= =

reverse-proxy 2, == APACHE

icon-fel icon-fe2

MaxScale

Back-end /
application server

IN o
nedec g Oy &

MariaDB Galera Cluster

L m
Database — — —

=
icon-db1l icon-db2 icon-db3 OriCi DB

Figure 26: Data Three-tier architecture and technologies (Source TIM Internal documentation) at Livorno pilot site

5.3.3.2 Processed data storage

The processed data (i.e. data ready for transfer to CTS) are stored in sever NAS, notably a Network-
attached storage. It is a file-level computer data storage server connected to a computer network
providing data access to a heterogeneous group of clients. The system contains more storage drives,
arranged into logical, redundant storage containers or RAID. It is configured in such a way, a single
bad block on a single drive can be recovered completely via the redundancy encoded across the
RAID set. The data are organised in archives generated by the tool provided by AKKA, which at the
same time create the archive and the metadata descriptor.

45

AUTOPILOT

6 Tampere pilot site specificities

This section presents the data management of the Tampere pilot site, and the related architecture.

6.1 Architecture design rationale

This subsection presents, describes and justifies the main design decisions. The following
requirements and constraints define what the project expects from the architecture.

6.1.1

Non-functional requirements

Requirements stated below are the most important non-functional requirements this pilot site will
adhere to, in order to ensure an optimal integration in the AUTOPILOT project.

6.1.1.1 Design constraints
Table 14: Tampere pilot site design constraints
NFRQ-DC-01 Networking PSTS must be connected to the Internet D3.6
NFRQ-DC-02 Networking PSTS can enable manual collection of test D3.6
data using hard drive, flash drive, USB key
NFRQ-DC-04 Data Storage PSTS should use a database to store test D3.6
data descriptions.
NFRQ-DC-06 Data Storage PSTS must have a storage filesystem. GA -DMP, D3.6
NFRQ-DC-03 Data Transfer PSTS must allow sending stored data by D3.6
FTP to the CTS

NFRQ-DC-08 Test Data PS must send data that are compliant to D3.6 decision

Interface the provided description.xml reused at PS level

6.1.1.2 Architecture quality goals

This section presents two kinds of quality requirements:
- Performance and scalability requirements
- Availability and reliability requirements

Table 15: Tampere pilot site non-functional quality requirements

NFRQ-QR-01 Data Interface PS Test Server must send the Test Data D3.6
according to interface defined by CTS (tar
file and description file)
NFRQ-QR-02 Data Storage / PSTS must provide a secured storage D6.9, D3.6
Backup and backup to avoid data loss.
NFRQ-QR-03 Data Storage PSTS must provide enough storage space. D3.6
NFRQ-QR-05 Data Storage PS Test Server must store loT, vehicle D4.1
and survey data as they are provided
NFRQ-QR-08 Data All PS data sources must be synchronised D4.1 & D3.6

synchronisation

with each other (within 1 second to
enable analyses)

46

UTOPILOT

6.1.1.3

loT platforms requirements

This section presents the requirements related to the loT platforms.

Table 16: Tampere pilot site loT platform requirements

NFRQ-IOT-01 Platform The loT platform must be available when D2.3 & D3.2
Availability running test sessions.
NFRQ-I0T-02 loT Platform The loT platform must provide standard D2.3
standard oneM2M implementation
NFRQ-IOT-05 Platform Storage The loT platform must provide storage D3.6
Capabilities means until data are collected by the
pilot site
NFRQ-IOT-06 Data logging The loT platform must provide logging of D4.1
events
NFRQ-10T-07 Data The loT platform must be synchronised D4.1
synchronisation with the other devices at the pilot site
NFRQ-IOT-08 Data The loT platform must add a timestamp D4.1
synchronisation upon data/measure reception
6.1.1.4 Other non-functional requirements
Table 17: Tampere pilot site non-functional requirements
NFRQ-NF-01 Data privacy, Collected data, especially surveys, must D6.9

legal

be anonymised before transferring it to
the central storage.

6.1.2 Design rationale

Data collection at the pilot site enables later analysis of key performance indicators from vehicle &
loT data. It also covers carrying out user surveys. The vehicle and loT data are logged as .csv files of
defined formats. The files will be collected manually to a test site server, where they are checked for
quality and made available for further evaluation.
6.2 Global architecture

Figure 27 shows the architecture of the Finnish test data architecture. The data will be collected
locally by the different components, and then transferred manually to the Test Site Pilot Server,
where quality checks are performed, and from there it is transferred to the AUTOPILOT Central Test

Server.

47

AUTOPILOT

Vehicle data

Camera data [

- AUTOPILOT

. . Evaluation team
loT data |

Finnish pilot server,
- . local data processing

Surveys
Manual

transfer

Figure 27: Tampere pilot site Test Data architecture

6.3 Architecture components
6.3.1 Data upload components

The data collection components and raw data acquired are described in the following subsections.
The focus is about how devices, platforms and other sources data are uploaded in the test server
platform.

6.3.1.1 loT platforms

The data at the IoT platform will be stored in a CSV file, and downloaded at the end of each piloting
session to the PSTS.

6.3.1.2 Vehicle data

A component has been developed that stores the vehicle data made available over DDS (Data
Distribution Service — internal communication between vehicle components) in csv files. Log data
files will be transferred manually at the end of each piloting session to the PSTS.

6.3.1.3 Survey data

For the survey data, the Tampere pilot site will use the tools and methods indicated in WP4, once
available. In case paper surveys are deemed necessary, the pilot site will transfer the data to the
selected electronic/online tool, in order to collect all data in a harmonised format (e.g. csv or Excel).

6.3.1.4 V2X messages data

V2X messages are generated and collected by the in-vehicle ITS-G5 OBUs. The in-vehicle OBU makes
the data available for other applications through DDS. The V2X message data are hence included in
the vehicle data logs. However, no CAM and DENM messages are planned to be used in the Tampere
pilot.

6.3.1.5 Other data

The mobile roadside unit, on which the traffic camera is installed, has a similar in-vehicle loT
platform as the vehicle. A similar data collection component as for the vehicle will be used to store
the data from the roadside unit. Only events will be stored, not the actual camera images and video.
Event data is anonymous.

6.3.2 Data processing components

The data of the different data sources will be transferred manually to the PSTS using physical means

48

AUTOPILOT

such as USB sticks and hard drives. The data will be stored in different directories, with names based
on the day of measurement. Additionally, the .csv data will be imported to a PostgreSQL database.
Several quality checks, both manual plots and database queries, will be performed in order to
provide a clean and ready-to-use data for evaluation.

- loT Platform data

- Camera data to PSTS Quality
check

- Survey

Figure 28: Data processing components at Tampere pilot site

6.3.2.1 Quality check
Quality checking at the pilot site ensures that
- Test equipment has not experienced glitches after pre-tests and data collection continues to
work well
- Data does not contain values indicating strange system behaviour, e.g. vehicle speed above
300 km/h. If the data contains such values, such behaviour will be documented.
- Data is mainly continuous instead of having missing periods.
Additionally, during pre-testing, quality checking ensures that:
- Data cross-references exist (IDs match between tables) and data is synchronised to a
reasonable level of accuracy to enable analyses over various logs
- Data plots show consistent system and log behaviour, capturing test periods
- Example indicators such as mean speed or specified distances can be calculated.

Quality checking during pre-testing requires collaboration with analysts.

Quality testing during actual tests includes running defined database scripts after test data has been
first imported to PostgreSQL. This includes e.g. calculating logging frequencies for different signals
and seeking values outside defined normal ranges. Selected variables will also be plotted manually
to visually inspect data. Quality checking should be performed frequently during user test weeks to
ensure that data is not missed and tests do not have to be repeated.

6.3.2.2 Processing and enrichment
At Tampere pilot site, processing and enrichment is limited to providing mandatory data and
documentation to describe its format.

6.3.2.3 Metadata definition
At the level of the pilot site, metadata definition will be limited to providing a complete description
of the Test Data described in D3.6

6.3.3 Data storage
Both the raw and the imported PostgreSQL data will be stored at VTT’s servers.

6.3.3.1 Raw data storage

Regarding security, the test equipment will almost continuously be monitored by test site personnel.
Additionally, collected data poses no specific confidentiality (product or company) risks. The data
includes personal data, but of no sensitive nature, since the tests are controlled tests in specified

49

AUTOPILOT

test areas, and the test subjects will have signed a consent form accepting scientific use. Therefore,
no specific measures are necessary to protect data during its collection.

After each test day, data is collected and sent to a test site server and deleted from logging
equipment (both vehicle and roadside). The data server resides within VTT’s premises, which are not
accessible to the public, and only named persons have access rights to operate the computer. After
the project ends, data will additionally be encrypted, so that even if the computer would be hacked
or otherwise accessed, the data would be extremely difficult to open.

6.3.3.2 Processed data storage
Processed data storage at the test site covers mainly the data imports to a PostgreSQL database and
cleaned raw logs, made available for evaluation. After the project ends, related database tables will
be backed up as files and stored together with evaluation/raw data and general test site
documentation. Depending on analyses, such databases could also contain key performance
indicators derived from raw data.

6.3.3.3 Metadata storage and user consent forms
Test site documentation is stored together with data that is made available for analysts. The
documentation is public within the consortium.

Consent forms signed by the test subjects are stored in a secure location, separate from log data.
The forms are kept as long as the stored log data contains personal data. In case the data is
anonymised or destroyed, the consent forms would be destroyed as well.

50

AUTOPILOT

7 Vigo pilot site specificities

This section presents the use case managed by Vigo pilot site, and the specific architecture of the
pilot site components.

7.1 Architecture design rationale

This subsection presents the rationale of the global design, i.e. it describes and justifies the main
design decisions. The requirements and constraints define what the project expects from the

architecture.

711

Non-functional requirements

Requirements below are the most important non-functional requirements this pilot site will comply
(or adhere to), in order to ensure an optimal integration in the global AUTOPILOT project.

7.1.1.1 Design constraints
Table 18: Vigo pilot site design constraints
NFRQ-DC-01 loT PSTS must be connected to the Watson loT D2.3
Platform™.
NFRQ-DC-02 | Data collection PSTS must be able to store data going D3.6
through the loT platform.
NFRQ-DC-03 Data Storage PSTS must use a database for storing and D4.1 & D3.6
accessing parking test data.
NFRQ-DC-04 | Data collection | PSTS must provide tools for cleaning stored D4.1 & D3.6
parking data
NFRQ-DC-05 | Data collection | PSTS must guarantee internal consistency of D4.1 & D3.6
the data
NFRQ-DC-06 | Data Transfer PSTS must allow subscribing to the parking D2.3
data coming from the Watson loT
Platform™.
NFRQ-DC-07 Data Access PSTS must allow access parking data via the D2.3
REST API based on unique identifiers of the
parking data sources
NFRQ-DC-08 Data Access PSTS must allow access parking data via the D2.3
REST API based on geospatial queries
NFRQ-DC-09 Data Format Data must be stored in the serverin a D4.1 & D3.6
readable format following the requirements
in D4.1
NFRQ-DC-10 Data model CAM, DENM and SPAT must be stored in D4.1 & D3.6
agreed data format and data model: ITS G5
NFRQ-DC-11 | Data Transfer | PS must send the data collected in the local D4.1 & D3.6
server to the centralised server of the
project

7.1.1.1.1 Design constraints of the Parking Spot Service

This section describes design constraints of the Vigo PSTS related to the Parking Spot Service. These
constraints guarantee a correct collection and storage of test data. The Watson loT Platform™

51

AUTOPILOT

should be used as a basic 10T platform and it should be connected to the IBM CloudAnt™ database
for data storing. The overview of the PSTS is presented in Figure 29. First, all data from loT devices
are being sent to the Watson loT Platform™. The IBM Parking Server registers itself as a subscriber to
the parking messages with the loT platform. Every message published by loT devices passes through
the loT platform and is received by the server. The server checks quality and consistency of the
message and stores correct messages in the IBM CloudAnt™ database. The server also provides
interfaces for accessing existing messages.

IBM Parking Service IBM CloudAnt Database
.9 EM Bluemix e— ’9 [EM Bluemix

=

o

1BM Watson loT

! -

= - -
@ 23 - | @)
— | |) SNne » S _

Parking Survelllance Parking
vehicles garages cameras sensors

loT devices

Figure 29: Architecture of the Vigo Parking Spot Testing Server

7.1.1.2 Architecture quality goals

This section presents two kinds of quality requirements:
- Performance and Scalability requirements
- Availability and Reliability requirements

Table 19: Vigo pilot site non-functional quality requirements

NFRQ-QR-01 Data Storage PSTS must provide secure storage for the D3.6
services information
NFRQ-QR-02 Data Storage PSTS must provide enough storage space to D3.6
save the services information

NFRQ-QR-03 Data PSTS must support different loT devices D2.3
collection

NFRQ-QR-04 Data PSTS must support data handling with a D2.3
collection regular time interval of five seconds

7.1.1.2.1 Architecture quality goals of the Parking Spot Service

This section describes non-functional quality requirements of the Parking Spot Service. These
requirements should guarantee the correctness, stability and scalability of the Parking Spot Service.
These requirements are aligned with the parking service use case definition. In particular, the PSTS
must allow different data sources (e.g., parking garages) to send parking data within regular time
intervals (five seconds between consecutive calls from one loT device). All parking data must be
securely stored.

52

AUTOPILOT

7.1.1.3

loT platforms requirements

This section presents the requirements related to the loT platforms.

Table 20: Vigo pilot site loT platform requirements

FRQ-10T-01 Platform The loT platform must be available during all D2.3
Availability test sessions
FRQ-IOT-02 Platform The loT platform must be available for one D3.2
Availability week before test sessions for parking data
collecting for development purposes.
FRQ-IOT-03 Platform The loT platform must remain available after D2.3
Availability test sessions for parking data collecting
FRQ-IOT-03 Platform The loT platform must provide enough D2.3
Storage storage until parking data are collected
Capabilities
FRQ-10T-04 Data logging The loT platform must provide logging of D2.3
events.
FRQ-1OT-05 Data The loT platform must be synchronised as D2.3
synchronisation any loT device.
FRQ-IOT-06 Data The loT platform must add a time stamp D2.3
synchronisation upon data/measure reception.
FRQ- I0T-07 Data Transfer The loT platform must provide a way to D2.3
register loT devices acting as data sources
for the parking information
FRQ- I0T-08 Data Transfer The loT platform must provide a way to D2.3
publish data to the parking data topics for
registered loT devices
FRQ- I0T-09 Data Transfer The loT platform must provide a way to D2.3
subscribe for parking information topics
FRQ- I0T-10 Data Transfer The loT platform must provide a way to D2.3
receive parking information based on
existing subscriptions for the parking data
topics

7.1.1.3.1 IoT platform requirements of the Parking Spot Service

This section describes the requirements of the Watson IoT Platform™ which has been selected as the
basic loT platform for the Parking Spot Service. The loT Platform should guarantee a safe, reliable
and scalable way for publishing and subscribing to the parking information coming from the loT
devices.

7.1.1.4 Other non-functional requirements

This section might include for example:
- Operational and Environmental requirements
- Security requirements
- Legal requirements

53

AUTOPILOT

Table 21: Vigo pilot site non-functional requirements

NFRQ-NF-01 Data privacy Collected data, especially surveys, must be D6.9
anonymised before storage.
NFRQ-NF-02 Data privacy | All private information must be removed from D6.9

the parking data message before publishing to
the Watson loT Platform™.

7.1.1.4.1 Other non-functional requirements of the Parking Spot Service
The parking PSTS assumes all parking information messages do not contain any private information
and are anonymised before being sent to the Watson loT Platform™.

Table 22: Vigo pilot site non-functional requirements of the Parking Spot Service

NFRQ-NF-01 Data privacy | All private information must be removed from D6.9
the parking data message before publishing to
the Watson loT Platform™.

7.1.2 Design rationale

In the Vigo pilot site there are two use cases: urban driving and automated valet parking. These two
services are going to be tested in controlled test environments. This type of testing clearly conditions
the type of logging. The part of the services and systems deployed that are in the vehicle are going
to be registered predominantly using a CAN format. The files obtained are going to be collected
manually from the vehicle and sent to the pilot site server. This server is going to also receive the
V2X log files from the infrastructure and the loT platform. Once this data is in the server the
different files are going to be processed in order to prepare the data for the analysis defined in WP4.

7.2 Global architecture

This section presents the essentials of Vigo pilot site system architecture, including main API
components, services and functionalities.

The following chart represents the main items participating in the data collection in the Vigo pilot
site. These different items will upload the data through different interfaces to the CTAG central
server.

54

AUTOPILOT

Traffic Lights Parking Service

fn Vehicle V2X

AD Functions
Platform

Vehicie Data SOFRE PR Traffic Sensors

Platform

CTAG Datalogger loT Platform

Infrastructure
vax

CTAG Central Server

Figure 30: Vigo pilot site Test Data architecture

Once the data is uploaded to the central server, a harmonisation and quality check process is
launched according to the project requirements.

After this process, the data can be sent to a project central server to be analysed by the evaluators.

7.3 Components architecture

The following pictures describe the main components in the architecture of the two services
deployed in the Vigo pilot site.

Figure 31 describes the data management process for the service “Urban driving”. In this case it can
be observed how the main actors (camera, traffic light, traffic server and vehicle) are connected to
the loT platform.

55

AUTOPILOT

Prissice Camera

S —

\

-
(
Phvaical Trams Lioh l -

RSY e

1B8M Watson

Hazards Sever

>

T
/ Clouddcad l

Manager

Hazard Device Urdan Server

+

TNO

Connector

ASN

\ 4
c
o
]
N

Bus CAN

Figure 31: Data Management architecture at Vigo pilot site for urban driving

Figure 32 shows the data architecture for the service “Automated valet parking”. In this case the
main actors are the parking management service, the mobile application and the vehicle.

56

AUTOPILOT

IBM Watson TNO

IBM Parking Service

Cloud4cad l Connector
: !
4-———”1 Parking Fﬂ ASN
t

AP H Urban

A
A A 4

==
!

Bus CAN

Figure 32: Data Management architecture at Vigo pilot site for AVP

7.3.1 Data upload components

This section describes the main components used for uploading data for the services in the Vigo pilot
site.

7.3.1.1 loT platforms

The Parking Spot Service uses the Watson loT Platform™ for communication between parking
information sources and the parking spot server. The AUTOPILOT project uses the Watson loT
platform owned by the IBM Ireland project member. The Watson loT Platform™ assigns a unique
identifier for each registered data provider or data subscriber. This identifier is used for publishing
and subscribing to the messages coming from/to the loT platform.

In order to use the Watson loT Platform™ one should create a new type of an loT device which acts
as a source of parking information. This operation allows real parking loT devices at the Watson loT
Platform™ to be registered. Because of this operation, each loT device gets an authentication token
and an authentication key. These values are used by the Watson loT Platform™ for authentication of
all agents which can publish and subscribe messages.

In the case of the Parking Spot Service the Vigo pilot site parking garages act as a source of parking
data, and publish information to the loT platform. From the other side the parking spot server
subscribes to all published parking messages. These messages should be verified and stored in the

57

AUTOPILOT

IBM CloudAnt™ database. The following table contains settings which should be used for publishing
and subscribing the parking messages.

Table 23: Vigo Watson loT Platform settings

1 IBMReParkingTable This type of loT devices is used for all messages which contain
information about parking tables.
2 IBMReParkingStatus This type is of loT devices used for all messages which contain

information about occupation statuses of a parking table.

3 authentication token | This parameter is used to publish / to subscribe for messages within
/ authentication key the Watson loT Platform™.

4 ID of an loT device This is a unique identifier of an l1oT device of a certain type.

The Parking Spot Service should be subscribed to parking messages, check consistency of these
messages and store them in a database. In addition, the PSTS should provide a RESTful API to access
parking data. All parking messages should be aligned with the DATEX Il data model format.

The parking server should support two types of data models: parking tables and statuses of parking
tables. The first model describes a group of parking spots, their location and properties. The second
type consists of a link to the parking table and its occupancy status.

The RESTful APl functionality of the testing server should allow adding, updating, getting and
deleting parking tables. In addition, it should provide interfaces for adding and retrieving parking
table statuses. Access to the parking tables or statuses must be possible via unique identifiers or
geographical locations.

The architecture of the parking database should be optimised for efficient data storage and fast
querying of parking information. The database should store all original messages and build
additional geospatial indexes for geographical queries.

7.3.1.2 Vehicle data
All the data required from the vehicles will be accessed through a CAN interface and stored in the
local server.

7.3.1.3 Surveys data
All surveys data will be collected through individual forms and stored manually in the local server
complying with the General Data Protection Regulation.

7.3.1.4 V2X messages data

Both in the infrastructure (RSU) and vehicles (OBU) the V2X data will be stored following the ETSI G5
standard. Every type of message will generate a file containing all the data fields described in the
standard.

All this text files will be synchronised with the local server.

7.3.2 Data processing components

The following image describes the data processing components in the Vigo pilot site:

58

AUTOPILOT

Data
Storage
Data Data Data Fillo.ring
Processes Conmcden e
eck
i
Data :
Harmonization i
Tools l | Tool :
T ——

Figure 33: Vigo Data Processing components

7.3.2.1 Analysis
The data stored in the pilot site will be compliant with the OneM2M model for the loT data and the
ETSI ITS- G5 standard for V2X data.

7.3.2.2 Quality check
The following items will be checked according to project requirements:
e Naming convention
Data resolution and precision
Data frequency for each measure and message stored
ID convention established for the pilot site
Define and check data ranges according to previous definitions. Specially focused on GPS
data

7.3.2.3 Processing and enrichment
No additional processing is going to be performed in the pilot site.

7.3.2.4 Metadata definition
The metadata will include the description of each type of test carried out and the description of the
established IDs in the pilot site.

7.3.2.5 Analysis and quality check of the Parking Spot data messages

This section describes steps for parsing, filtering and verification of the data messages used by the
parking spot service. We assume all messages are aligned with the DATEX Il data format and are
represented as JSON documents. The PSTS should check the format of an input message and its
compatibility with the DATEX Il data format. Parking table occupancy messages also contain links to
the corresponding parking tables. The server should check all links to other documents and
guarantee their consistency. All non-compliant data should be rejected by the server and not saved
in the database.

Injection of a new parking table should initiate an update of the current geospatial index. This index
keeps geographical locations of all existing parking spots and their groups. The index allows
retrieving unique identifiers of parking tables by their geographical location.

59

AUTOPILOT

A deletion of an existing parking table should force a deletion of all related documents — status
messages for this parking table and its representation within the geospatial index.

7.3.3 Datastorage

7.3.3.1 Raw data storage
Depending on the data sources the raw data will be collected in different ways. All the raw data is
going to be sent to the central local server.

7.3.3.2 Processed data storage
The processed data will be stored in the central server according to the project requirements. This
includes a file system with all the collected data accessible by the evaluators in the project.

60

AUTOPILOT

8 Centralised Test Server architecture

8.1 Architecture design rationale

This subsection presents the rationale of the design, i.e. it describes and justifies the main decisions
of design. The requirements and constraints define the expectations about the architecture.

8.1.1 Non-functional requirements

Requirements below are the most important non-functional requirements the CTS must comply with
in order to ensure an optimal interoperability with pilot sites and integration in the AUTOPILOT

project.

8.1.1.1 Design constraints
From an architectural standpoint, a constraint is an architectural design or implementation decision
that has been selected to be treated as if it were a formal requirement.

Table 24: Centralised Test Server design constraints

NFRQ-DC-01 Data transfer The CTS must provide a SFTP link to store D3.6 decision at
the test data PS level
NFRQ-DC-02 Data transfer The CTS must provide a SFTP link to store D3.6 decision at
the evaluation results data PS level
NFRQ-DC-03 Data browsing The CTS must provide an interface to D3.6 & D4.1
search uploaded test and evaluation result
data
NFRQ-DC-04 Data storage The CTS must provide a data storage space D3.6
to store test data and evaluation results
NFRQ-DC-05 Data upload The CTS should provide a monitoring D3.6
monitoring system that will enable the data uploading
process
NFRQ-DC-06 CTS REST API The CTS must provide a REST API that gives D3.6
access to Search, Upload and Download of
test data and evaluation results.
8.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:
- Performance and Scalability requirements
- Availability and Reliability requirements
Table 25: Centralised Test Server non-functional quality requirements
NFRQ-QR-01 Data validation | CTS must check and validate that uploaded D3.6
test data complies with the predefined test
description interface (test data xsd
interface)
NFRQ-QR-02 Data validation | CTS must check and validate that uploaded D3.6

evaluation data complies with the
predefined test description interface
(evaluation result xsd interface)

61

AUTOPILOT

NFRQ-QR-03 | Data availability CTS must be available during the GA
AUTOPILOT project execution from M18 to
the end of M36
NFRQ-QR-04 | Data accessibility CTS must provide access to all the D3.6
evaluator partners
NFRQ-QR-05 Data CTS will receive the data (test data, D3.6
evaluation result) in a zip or tar file that
must be unzipped to retrieve the metadata
information that will be used to search
through the CTS web interface
8.1.1.3 Other non-functional requirements
This section includes:
- Operational and Environmental requirements
- Security requirements
- Legal requirements
Table 26: Centralised Test Server non-functional requirements
NFRQ-NF-01 Data access CTS must provide an authentication and D3.6
authorisation access to stored data
NFRQ-NF-02 Data processing Test data will be stored without any D3.6,D3.1, D4.1
transformation or conversion
NFRQ-NF-03 Data processing Before uploading data must be D3.6
anonymised
NFRQ-NF-04 Data processing Evaluation result will be stored without D3.6 & D4.1
any transformation or conversion
NFRQ-NF-05 Data accessibility Test Data and evaluation result will be D3.6
provided through web interface
NFRQ-NF-06 Data storage Test data and evaluation result are stored D3.6
locally in the CTS environment
NFRQ-NF-07 Data storage A PostgresSQL database is used to store D3.6
the content of the description file
associated to any test data or evaluation
result

8.1.2 Design rationale

The design decisions are guided by the use cases of the CTS:
- Uploading data from pilot sites
- Uploading data by evaluators
- Browsing, fetching, querying, searching among data
- Storage of various type of data
- Monitoring upload tasks
- Users and profiles management
- Downloading data manually (WEB API)
- Downloading data automatically (REST API)

8.2 Centralised Test Server architecture

62

AUTOPILOT

This section presents the schematic system architecture, including interfaces of services and
functionalities.

Figure 34 represents the deployment of the CTS, on four specific servers:
- Application server: hosts the front-end (web interface and REST API), and the back-end (CTS
main application)
- File system server: stores the test data files
- Database server: stores the test data description
- SFTP server: receives test data uploaded by pilot sites

Database
server

Filesystem
Application server server
m Web interface

Uploading
application

SFTP

server

Figure 34: Centralised Test Server architecture

Web client and REST API are used to browse and download test data from CTS. An uploading
application is used to upload test data or evaluation results. The red link between uploading
application and application server represents the authentication process, the uploading task
creation and the sftp information acquisition. Once sftp information is retrieved, the uploading
application connects and uploads test data files to the sftp server.

8.2.1 Functional description

This section presents a functional view of the components of the application server.

63

AUTOPILOT

Figure 35 shows the main Use Cases (logical software modules) of the application server of the CTS.
Some modules can be triggered by an API, either from web interface, REST interface, or uploading
application, other modules are internal.

_ g

Figure 35: Centralised Test Server components

Here under is the layers view showing the data flow when uploading pilot site data to the CTS, when
accessing or downloading data for evaluation.

PIIOt S|te pS HMI m t‘..dlua'cr Monltor
FTP uploader direct

access client WEB server WEB server

Figure 36: Components layers

64

AUTOPILOT

As seen in the D3.6, the logic of the storage data flow is shown below. Received data archives are
processed by the upload component in the application server. The first step is to analyse the
description file of the archive. Its content is used to populate a database with uploaded tests and
evaluation results descriptions.

Data are then stored as test data files in a dedicated filesystem.

FOT database creation is under study. This database could be populated using uploaded dumps.

Description
Metadata
Database

Test data file

Database

Figure 37: Schematic storage flow

8.2.2 HMI Interfaces

The following diagram summarises the interfaces with the CTS:
- Uploading data will be achieved using applications
- Accessing and managing data will be done using a web client

Figure 38 shows the applications used to upload test data and evaluation results, and details the
main pages of the web client.

65

AUTOPILOT

Pilot Sites / Centralized Test Server HMI
Evaluator

Ref: WebApp (page 1) Ref; WebApp (page 2)
Name: Test Data Browser Name: Test Data Task Monitor
Browse, search ond download Display test data uplood tosk
test doto stotus

CTs
Ref: WebApp (page 3) Ref: WebApp (page 4)
Name: Evaluation Result Name: Evaluation Result Task
Browser Monitor
Browse, search and downlood Display evaluation result
evoluation results uplood task status

Figure 38: CTS HMI summary

8.2.2.1 Interfaces for data upload

The procedure for uploading test data and evaluation results to the CTS is to use two applications.
Application 1 (Figure 38) will be provided to the pilot sites and the evaluators, and Application 2
(Figure 38) will be provided to the evaluators.

These applications allow selecting files, filling metadata, creating and storing archives and uploading
them to the CTS. They also allow for uploading stored archives (previously created with the
application) to the CTS.

These applications, as with the web client, require user authentication. Credentials will be provided
to the responsible at each pilot site. Administrators will be able to create new users with specific
access rights.

Note: evaluators will have the possibility to upload reworked and enriched test data (as new data),
in order to share their work, produced by modifying downloaded test data, using application 1.

Figure 39 shows the main page of Application 1 (Test data builder). All fields are mandatory to create
the test data description file. An “Add file” button opens a new page to select test data files by
browsing the filesystem and also fill the description fields associated with each test data file.

When all the information has been collected and the test data files added, the archive can be
created and stored or sent to the CTS.

66

AUTOPILOT

A x
S.UTOPILOT Upload Test Results
Test Data Test Details
Pliot Site [uvumu : Test Name {name I
UseCase [Car.Shanng o identifier 123
Name name : Status | Incomplete i
Description | descrption Publish Status | NO v
Comment | comment
Sesson Name [sessionName
o Cate April 26, 2018 || |
TestContext cantext ¥
i Start TimeStamp 123 .
Comment | comment i
End TimeStamp 123
o
Data Manager
Name 'baco
Email -paco@akka.au
Figure 39: Test Data Builder HMI
8.2.2.2 Interfaces for data access

CTS collected data are accessible using a web browser. Figure 40 shows how it is displayed on the
test data browser page (WebbApp page 1 in Figure 38).

67

AUTOPILOT

Tent Cuts List

Atmm Pt S Une Cane Dwwrpsor Carrem Pt Stana weice Tout Stana Sexrt Teve Dt Thre

Lt

Figure 40: CTS Web application HMI

8.2.3 RESTAPI

In addition to the CTS Web application which enables users to search and query available data, a
RESTfull APl makes it possible to give access to all the public resources available in the CTS. This
interface is based on a REST API standard and is documented by and can be discovered through the
swagger provided tools (swagger.io).

8.3 Centralised Test Server components architecture

This section presents the detailed architecture of the main components from section 8.2.

8.3.1 Dataupload

This component provides the functionality to upload data and unzip the archives. Once files are
readable, it will check the completeness of the description file and its consistency with the uploaded
files. Then files are handed over to the metadata processing component.

8.3.2 Metadata processing

This component provides the functionality to process and store metadata information describing the
upload currently in process. These metadata are stored in the description database.

8.3.3 Data storage
This component provides the functionality to create repositories for each upload, to store files in
their dedicated repository, and to store the original uploaded archive in a backup repository.

Information about the path to retrieve data (repository) will be added in the description database.

According to data type, it may optionally dump the test data into FOT databases.

68

AUTOPILOT

8.3.4 Evaluator browser

This component offers an interface to the evaluator for browsing available test data, using various
criteria (use case, pilot site, date, test point, various metadata fields), retrieve and download test
data.

According to data storage policy, it may optionally enable the evaluator to execute queries on the
data.

8.3.5 Download component

This component will build an archive according to an evaluator data request and make it available
for download.

8.3.6 Query component
This component will run queries built in the evaluator browser.

8.3.7 Upload evaluation results

This component provides the functionality to upload evaluation results using the evaluation result
upload application provided to the evaluators. The evaluation results are stored in the CTS database
designed for this purpose.

8.3.8 Monitor, Task manager

This component will provide a way to monitor the upload progress and status, and to check the
status of previous operations.

69

AUTOPILOT

9 Conclusion

This deliverable describes the software architecture that will be put in place by each pilot site to
implement the data collection process used for the management of the test data produced by each
pilot site during the piloting activities.

A formal description of all the non-functional requirements and constraints is provided. Each pilot
site has built its own architecture, according to the use cases it will run and the specificities of the
partners involved in. Consequently, the workflows to collect and process data may differ, but the
collected data must be provided in a common data format. A harmonisation effort was done in D3.6
to share common data formats and data models, but specificities remain and are implemented in
each pilot site on a distributed platform called “Pilot Site Test Server”.

The AUTOPILOT project proposes a unique platform called a “Centralised Test Server” to upload,
share, store and browse many sorts of data, allowing the evaluators to work with harmonised data
and a convenient interface. All the test data will be uploaded into the centralised server using the
same interface. This interface unifies the way the test data and evaluation data will be transferred
and guarantees that all mandatory metadata will be provided in order to identify precisely any
shared data created during piloting activities.

The current document will be used by the architects and developer teams to define the targeted
distributed and centralised platforms. The CTS platform will be documented in the deliverable D3.8
“Implementation of Test Data Management Platform” due in M21.

70

