

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 – 2020)

Grant Agreement Number: 731993

Project acronym: AUTOPILOT

Project full title: AUTOmated driving Progressed by Internet Of Things

D-3.7

Test data management platform architecture

Due delivery date: 31/05/2018

Actual delivery date: 31/05/2018

Organisation name of lead participant for this deliverable: AKKA

Project co-funded by the European Commission within Horizon 2020 and managed by the European GNSS Agency (GSA)

Dissemination level

PU Public X

PP Restricted to other programme participants (including the GSA)

RE Restricted to a group specified by the consortium (including the GSA)

CO Confidential , only for members of the consortium (including the GSA)

2

Document Control Sheet

Deliverable number: D3.7

Deliverable responsible: AKKA

Work package: 3

Editor: Sadeq Zougari

Author(s) – in alphabetical order

Name Organisation E-mail

AITAAZIZI Amine AKKA amine.ait-aazizi@akka.eu

BANOUAR Yassine CONTI yassine.banouar@continental-corporation.com

DALET Benoit AKKA benoit.dalet@akka.eu

FALCITELLI Mariano CNIT mariano.falcitelli@cnit.it

KAHALE Elie AKKA elie.kahale@akka.eu

KALOGIROU Kostas CERTH kalogir@certh.gr

MATTA Joe VEDECOM joe.matta@vedecom.fr

NETTEN Bart TNO bart.netten@tno.nl

RIAL Moisés CTAG moises.rial@ctag.com

SCHREINER Floriane VEDECOM floriane.schreiner@vedecom.fr

SCHOLLIERS Johan VTT johan.Scholliers@vtt.fi

VELIZHEV Alexander IBM RE ave@zurich.ibm.com

ZOUGARI Sadeq AKKA sadeq.zougari@akka.eu

Document Revision History

Version Date Modifications Introduced

 Modification Reason Modified by

V0.1 31/11/2017 ToC ZOUGARI, Sadeq

 30/01/2018 First Draft ZOUGARI, Sadeq

 Draft with responsibilities ZOUGARI, Sadeq

V0.9 09/05/2018 Draft ready for peer review All

V0.10 29/05.2018 All partners contributions completed All

V1.0 29/05/2018 Version including peer reviewers
comments

DALET Benoit, D’ORAZIO Leandro,
NETTEN Bart, ZOUGARI Sadeq

mailto:amine.ait-aazizi@akka.eu
mailto:yassine.banouar@continental-corporation.com
mailto:benoit.dalet@akka.eu
mailto:mariano.falcitelli@cnit.it
mailto:elie.kahale@akka.eu
mailto:kalogir@certh.gr
mailto:joe.matta@vedecom.fr
mailto:bart.netten@tno.nl
mailto:floriane.schreiner@vedecom.fr
mailto:ave@zurich.ibm.com
mailto:sadeq.zougari@akka.eu

3

Abstract

This document presents the test data platform architecture. The platform includes the Pilot Sites’
Test Servers which collect test data at pilot site level, and the Centralised Test Server that stores all
the test data for evaluation, and also the evaluation results.

This document explains the implemented architectures in technical detail. For each pilot site, the
document identifies the design requirements and presents the chosen solution to be implemented
for the development of data uploading, data processing, data storage and data accessing
components.

This document also describes what will be implemented to support the provisioning of test data for
the evaluation tasks that require log data from vehicles, IoT platforms and cloud services, as well as
situational data from the pilot sites to detect situations and events, and to calculate the indicators,
and subjective data such as survey results and questionnaires from user and stakeholder activities.

The Centralised Test Server has to implement features that enable the storage and sharing of
collected test data in a harmonised way, from any pilot site, and provide interfaces to access and use
these data for evaluation purposes.

Legal Disclaimer

The information contained in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced consortium
members shall have no liability for damages of any kind, including without limitation direct, special,
indirect, or consequential damages, that may result from the use of these materials subject to any
liability which is mandatory due to applicable law. © 2017 by AUTOPILOT Consortium.

Abbreviations and Acronyms

Acronym Definition

ACP Access Control Policy

ADA Automated Data Analysis

ADAS Advanced Driver-Assistance Systems

AE Application Entity

API Application Programming Interface

ARP Address Resolution Protocol

ASCII American Standard Code for Information
Interchange

AVP Automated Valet Parking

CAM Cooperative Awareness Message

CAN Controller Area Network

CIN Content INstance

CON attribute CONtent attribute

CSE Common Services Entity

CTS Centralised Test Server

DDS Data Distribution Service

4

DMP Data Management Plan

EC European Commission

ETSI European Telecommunications Standards Institute

FAIR Findable – Accessible – Interoperable-Reusable

FESTA Field opErational teSt supporT Action

GA Grant Agreement

GPS Global Positioning System

HMI Human-Machine Interface

HTTP Hypertext Transfer Protocol

IoT Internet of Things

IP Internet Protocol

ITS Intelligent Transportation Systems

JSON JavaScript Object Notation

LIDAR Light Detection And Ranging

NAS Network Attached Storage

OBU On-Board Unit

ORDP Open Research Data Pilot

PO Project Officer

PSTS Project site test server

RADAR RAdio Detection And Ranging

RAID Redundant Array of Independent Disks

REST REpresentational State Transfer

RPM Revolutions Per Minute

SFTP Secured File Transfer Protocol

UPER Unaligned Packed Encoding Rules

URI Universal Resource Identifier

VPN Virtual Private Network

WP Work Package

XER XML Encoding Rules

5

Table of Contents

Executive Summary .. 10

1 Introduction .. 11

1.1 Purpose of the document .. 11

1.2 Intended audience... 11

1.3 Definitions ... 11

2 Test data collection and evaluation system overview ... 12

2.1 Context overview .. 12

2.2 Pilot Site Test Server overview .. 13

2.3 Centralised Test Server overview .. 14

3 Versailles pilot site specificities.. 16

3.1 Architecture design rationale .. 16

3.1.1 Non-functional requirements .. 16

3.1.2 Design rationale ... 18

3.2 Global architecture .. 19

3.3 Components architecture ... 19

3.3.1 Data upload components .. 19

3.3.2 Data processing components .. 26

3.3.3 Data storage .. 27

4 Brainport pilot site specificities .. 29

4.1 Architecture design rationale .. 29

4.1.1 Non-functional requirements .. 29

4.1.2 Design rationale ... 31

4.2 Global architecture .. 31

4.3 Components architecture ... 33

4.3.1 Data repository .. 33

4.3.2 Data upload components .. 34

4.3.3 Data processing components .. 34

4.3.4 Data storage .. 36

4.3.5 Data access .. 36

5 Livorno pilot site specificities ... 37

5.1 Architecture design rationale .. 37

5.1.1 Non-functional requirements .. 37

5.1.2 Design rationale ... 39

5.2 Global architecture .. 39

5.3 Components architecture ... 39

6

5.3.1 Data upload components .. 39

5.3.2 Data processing components .. 44

5.3.3 Data storage .. 44

6 Tampere pilot site specificities ... 46

6.1 Architecture design rationale .. 46

6.1.1 Non-functional requirements .. 46

6.1.2 Design rationale ... 47

6.2 Global architecture .. 47

6.3 Architecture components.. 48

6.3.1 Data upload components .. 48

6.3.2 Data processing components .. 48

6.3.3 Data storage .. 49

7 Vigo pilot site specificities ... 51

7.1 Architecture design rationale .. 51

7.1.1 Non-functional requirements .. 51

7.1.2 Design rationale ... 54

7.2 Global architecture .. 54

7.3 Components architecture ... 55

7.3.1 Data upload components .. 57

7.3.2 Data processing components .. 58

7.3.3 Data storage .. 60

8 Centralised Test Server architecture .. 61

8.1 Architecture design rationale .. 61

8.1.1 Non-functional requirements .. 61

8.1.2 Design rationale ... 62

8.2 Centralised Test Server architecture ... 62

8.2.1 Functional description ... 63

8.2.2 HMI Interfaces ... 65

8.2.3 REST API ... 68

8.3 Centralised Test Server components architecture .. 68

8.3.1 Data upload ... 68

8.3.2 Metadata processing ... 68

8.3.3 Data storage .. 68

8.3.4 Evaluator browser ... 69

8.3.5 Download component ... 69

8.3.6 Query component ... 69

8.3.7 Upload evaluation results .. 69

8.3.8 Monitor, Task manager ... 69

7

9 Conclusion .. 70

8

List of Figures

Figure 1: AUTOPILOT global system context view ... 12
Figure 2: Pilot Site Test Server generic system view .. 13
Figure 3: Centralised Test Server generic system view .. 14
Figure 4: Versailles Pilot Site Test Server architecture .. 19
Figure 5: Global overview of oneM2M resource tree for Versailles PS 21
Figure 6: Structure of Parking Slots Data for Versailles PS .. 21
Figure 7: Versailles AE_VEHICLES hierarchy .. 23
Figure 8: Versailles AE_PARKINGSLOTS hierarchy ... 23
Figure 9: Versailles AE_CHARGINGSPOTS hierarchy .. 24
Figure 10: Versailles URBAN_DRIVING Application Entity ... 24
Figure 11: Versailles AE_URBAN_DRIVING containers .. 24
Figure 12: Versailles AE_URBAN_DRIVING hierarchy .. 25
Figure 13: Test data collection and pre-processing on PS Versailles 26
Figure 14: Test data sources and flows in PS Versailles ... 26
Figure 15: Data storage means on the French PS .. 27
Figure 16: IoT platforms and services in the Brainport pilot site... 32
Figure 17: High-level architecture of the Brainport Pilot Site Test Server 32
Figure 18: Brainport PSTS web interface on https://ada1.tno.nl/autopilot 33
Figure 19: Brainport PSTS web interface for data uploading .. 34
Figure 20: Brainport PSTS Data processing steps for Automated Data Analysis (ADA) 35
Figure 21: Data Management Global architecture at Livorno pilot site 39
Figure 22: Data tree structure of IoT platform at Livorno pilot site (TCC and RSUs virtual entities) 41
Figure 23: Data tree structure of IoT platform at Livorno pilot site (NB-IoT DATEX2 and Crossroad
virtual entity).. 42
Figure 24: Data tree structure of IoT platform at Livorno pilot site (OBUs virtual entity) 43
Figure 25: Data processing components at Livorno pilot site ... 44
Figure 26: Data Three-tier architecture and technologies (Source TIM Internal documentation) at
Livorno pilot site .. 45
Figure 27: Tampere pilot site Test Data architecture .. 48
Figure 28: Data processing components at Tampere pilot site ... 49
Figure 29: Architecture of the Vigo Parking Spot Testing Server... 52
Figure 30: Vigo pilot site Test Data architecture ... 55
Figure 31: Data Management architecture at Vigo pilot site for urban driving 56
Figure 32: Data Management architecture at Vigo pilot site for AVP 57
Figure 33: Vigo Data Processing components.. 59
Figure 34: Centralised Test Server architecture .. 63
Figure 35: Centralised Test Server components .. 64
Figure 36: Components layers ... 64
Figure 37: Schematic storage flow ... 65
Figure 38: CTS HMI summary ... 66
Figure 39: Test Data Builder HMI ... 67
Figure 40: CTS Web application HMI ... 68

List of Tables

Table 1: Definitions .. 11
Table 2: Versailles pilot site design constraints ... 16

9

Table 3: Versailles Pilot site non-functional quality requirements .. 17
Table 4: Versailles Pilot site IoT platform requirements ... 18
Table 5: Versailles pilot site non-functional requirements .. 18
Table 6: Brainport pilot site design constraints ... 29
Table 7: Brainport pilot site non-functional quality requirements .. 30
Table 8: Brainport pilot site IoT platform requirements ... 30
Table 9: Brainport pilot site non-functional requirements .. 31
Table 10: Livorno pilot site design constraints .. 37
Table 11: Livorno pilot site non-functional quality requirements ... 37
Table 12: Livorno pilot site IoT platform requirements ... 38
Table 13: Livorno pilot site non-functional requirements ... 39
Table 14: Tampere pilot site design constraints .. 46
Table 15: Tampere pilot site non-functional quality requirements ... 46
Table 16: Tampere pilot site IoT platform requirements .. 47
Table 17: Tampere pilot site non-functional requirements ... 47
Table 18: Vigo pilot site design constraints ... 51
Table 19: Vigo pilot site non-functional quality requirements .. 52
Table 20: Vigo pilot site IoT platform requirements .. 53
Table 21: Vigo pilot site non-functional requirements .. 54
Table 22: Vigo pilot site non-functional requirements of the Parking Spot Service 54
Table 23: Vigo Watson IoT Platform settings ... 58
Table 24: Centralised Test Server design constraints .. 61
Table 25: Centralised Test Server non-functional quality requirements 61
Table 26: Centralised Test Server non-functional requirements ... 62

10

Executive Summary

This deliverable D3.7 “Test Data Management Platform Architecture” presents the AUTOPILOT test
data management architectures of the pilot sites, in particular the architecture of the Pilot Sites Test
Servers, and the architecture of the AUTOPILOT Centralised Test Server, all of which will be
implementing the “Data Collection and Integration methodology” defined in deliverable D3.6.

Each pilot site clearly identifies the software constraints (non- functional requirements) that will be
used to define the final architecture and to finally select the solution to be implemented.

D3.7 also gives an overview of the data flows, the data collection processes inside the pilot sites, and
the data uploading and processing into the Pilot Site Test Servers. This document also describes the
software architecture of the Centralised Test Server and the services and interfaces provided. D3.7
describes how the evaluator will upload and share its evaluation result.

In addition, this deliverable serves as the starting point for the software implementation of each
Pilot Site Test Server and of the Centralised Test Server.

11

1 Introduction

1.1 Purpose of the document

This document presents the architecture of the Test Data Management Platform.

Chapter 2 “Test data collection and evaluation system overview” is an introductory paragraph
summarising the principles of the AUTOPILOT project. It describes the global context, gives an
overview of the Pilot Site Test Server principles and of the Centralised Test Server role.

Chapters 3 to 7 “Pilot sites specificities” describe each pilot site’s architecture in detail. The first
paragraph describes the main requirements guiding the architecture and software development. The
subsequent paragraphs detail the architecture and the components of the PSTS.

Chapter 8 “Centralised Test Server Architecture” details the Centralised Test Server architecture. As
for the pilot sites; the requirements, services and components are described. A paragraph is also
dedicated to the interfaces, API and HMI used to interact with the CTS.

1.2 Intended audience

This deliverable (D3.7) is a public document and therefore, the intended audience for this document
is considered to be anyone that is interested in data collection and data sharing architecture
solutions that could be implemented in large-scale collection and management of test data and
evaluation results.

Within the project, the main intended audience for this deliverable is considered to be all
AUTOPILOT participants involved in the implementation of the tools, the software and data
management system at the pilot site and centralised level and those involved in the technical
evaluation (WP2, WP3 and WP4).

1.3 Definitions

Table 1: Definitions

Terms Definition

Centralised Test Server A centralised server storing and providing access to
test data and evaluation results

Pilot Site Test Servers A collection of servers and tools in charge of data
collection at pilot site level

Test data Data collected during piloting activities according to
requirements defined by WP4

Test data management
platform

A collection of tools and servers including
centralised and distributed test servers for collection
of test data

12

2 Test data collection and evaluation system overview

This section presents an overview of the test data management system as an introduction to the
description of the architecture of its components.

2.1 Context overview

The test data management platform is used to manage and collect the data produced by operational
tests so that it is available to evaluators.

The platform is composed of several distributed Pilot Sites Test Servers and a Centralised Test
Server.

The Pilot Sites Test Servers (PSTS) are the base elements in responsible for collecting and processing
test data from vehicles and IoT.

The role of the Centralised Test Server (CTS) is to manage and store test data uploaded from the
Pilot Sites’ Test Servers, and allow evaluators to access and use this data. The evaluator can also
upload and share its evaluation results with AUTOPILOT partners.

The architecture of the PSTS and of the CTS are guided by the requirements (about data, tools), the
specifications (about tests, evaluation) and the guidelines (about data management) defined in the
document “D3.6 Data collection and integration”.

Figure 1: AUTOPILOT global system context view

Pilot Sites Test Servers interact with the pilot site test environment:

 Each pilot site is in charge of collecting data from vehicles, sensors, IoT, data platforms,
environment, etc., while running test scenarios

 Each pilot site parses, filters, cleans and prepares collected data
 Each pilot site transfers log data in common format for evaluation to the Central Test Server

Central Test Server interacts with pilot sites and evaluators

13

 Central server collects, sorts and stores received test data and metadata

Evaluators interact with the Central Server

 Metadata are used to browse and retrieve collected and stored test data
 Evaluators can access and search data in order to analyse and evaluate the project
 Evaluators can store their evaluation results in a dedicated database

2.2 Pilot Site Test Server overview

A PSTS can be described as a workflow composed of the following components:
a data collection system that hands data to the processing components (parsing, filtering, quality
check, enrichment) and a storage component collecting processed data which are made ready for
uploading to the CTS.

Figure 2: Pilot Site Test Server generic system view

A specific Pilot Site Test Server must collect and store all the data created by a pilot site: contextual

data, acquired data, derived data, aggregated data (optional), and metadata.

General requirements applicable to all pilot sites:

 Each pilot site must ensure the data collection according to the data quality requirements.

 Each pilot site must provide the requested data in compliance with evaluation requirements

14

(time tag, formats, measurements, etc.).

 Data must be provided with its metadata (complete description of test and test data).

 Each pilot site must ensure that IoT data remains on the device until it is stored in the platform.

 Concerning data format requirements, data to be sent to the central IoT platform must follow a
predefined plan.

 Each pilot site must provide a secure environment for data storage.

 Each pilot site needs to have the necessary tools to check data quality. Automated scripts may
be provided to process large datasets in order to ease and enable post-processing of aggregated
data.

2.3 Centralised Test Server overview

The Centralised Test Server collects data produced by pilot sites and makes it available to evaluators.
Evaluators will be able to download data from the centralised server, and access specific types of
data directly inside the Server (API REST). The Server will also provide a way to store the results of
the evaluation, and enriched data produced by the evaluators.

Figure 3: Centralised Test Server generic system view

General requirements of the Centralised Test Server:

 Data must be described using additional information called metadata. The latter must
provide information about the data source, the data transformation and the conditions in
which the data has been produced.

 As the project will collect several data categories and several data types, several metadata
descriptions must be provided to describe the characteristics of each measure or component
and also how the data was produced and collected.

15

 The Centralised Test Server will collect all of the Pilot Sites’ test data and metadata required
for the evaluation.

 Before uploading to the CTS, data must be anonymised.

16

3 Versailles pilot site specificities

This section presents the architecture of the Versailles pilot site.

3.1 Architecture design rationale

This subsection presents the rationale behind the global design, i.e. it describes and justifies the
main design decisions. The requirements and constraints define what the project expects from the
architecture.

3.1.1 Non-functional requirements

The system requirements prescribe the architecture at the system level; the components
requirements refine the system requirements for a specific subsystem.

The requirements listed below are the most important non-functional requirements that the Pilot
Sites will comply with (or adhere to) in order to ensure optimal integration in the global AUTOPILOT
project.

3.1.1.1 Design constraints
From an architecture standpoint, a constraint is an architectural design or implementation decision
that has been selected to be treated as if it were a formal requirement.

The following table displays Versailles’ design constraints.

Table 2: Versailles pilot site design constraints

ID Title Description Source

NFRQ-DC-01

IoT PS should be able to connect to get data
from an IoT platform.

GA

NFRQ-DC-02 Data collection PS must be able to collect data stored or
published in the Sensinov IoT platform.

D3.6

NFRQ-DC-03 Data collection PS must enable manual collection of test
data using a hard drive, flash drive, USB

key

D3.6

NFRQ-DC-04 Data Storage PS Test Server should use a database to
store test data descriptions.

D3.6

NFRQ-DC-05 Data Storage PS Test Server should use a FOT database
to store test data.

D3.6

NFRQ-DC-06 Storage PS Test Server must have a storage file
system.

GA – DMP, D3.6

NFRQ-DC-07 Data Transfer PS Test Server must allow stored test data
to be sent by ftp to the Centralised Test

Server.

D3.6

NFRQ-DC-08 Test Data
Interface

PS must send data that are compliant to
the provided description

D3.6 decision
reused at PS level

NFRQ-DC-09 Test Server
Interface

PS Test Server should provide an API for
Versailles Test Data uploading

D3.6

NFRQ-DC-10 Test Data
Monitoring

Pilot site should display the status of the
test data upload.

D3.6 reused at PS
level

NFRQ-DC-11 Data Format &
Data Model

Vehicle data must be stored in a human
readable format and must follow the

D4.1 & D3.6

17

WP4.1 parameter naming rule, parameter
type and parameter quality constraints

NFRQ-DC-12 Data Format &
Data Model

GPS data must be stored in a human
readable format or standard format and

must follow the WP4.1 parameter naming
rule, parameter type and parameter

quality constraints

D4.1 & D3.6

NFRQ-DC-13 Data Format &
Data Model

IoT data must be stored according to an
agreed data model and data format

D4.1 & D3.6

NFRQ-DC-14 Data model CAM, DENM and SPAT must be stored in
agreed data format and data model: ITS

G5

D4.1 & D3.6

NFRQ-DC-15 Networking PSTS must be connected to the Internet D3.6

3.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:

- Performance and Scalability requirements
- Availability and Reliability requirements

Table 3: Versailles Pilot site non-functional quality requirements

ID Title Description Source

NFRQ-QR-01

Data Interface PS Test Server must send the Test Data
according to interface defined by CTS (tar

file and description file)

D3.6

NFRQ-QR-02

Data Storage /
Backup

 PSTS must provide a secured storage and
backup to avoid data loss.

D6.9, D3.6

NFRQ-QR-03 Data Storage PSTS must provide enough storage space. D3.6

NFRQ-QR-04 Data interface Pilot site must provide all mandatory
parameters for Urban driving, Car sharing

and Platooning

D4.1 and D3.6

NFRQ-QR-05 Data Storage PS Test Server must store IoT, vehicle and
survey data as they are provided

D4.1

NFRQ-QR-06

Data
identification

All provided data must be easily identified
by station ID and application ID

D4.1 & D3.6

NFRQ-QR-07 Data
Identification

All the provided data must be clearly
identified with metadata and

timestamped

D6.9, D4.1 & D3.6

NFRQ-QR-08 Data
synchronisation

All PS Versailles data sources must be
synchronised

D4.1 & D3.6

NFRQ-QR-09 IoT Data Model
& Data Format

PS Test must provide IoT data in the right
data model and the right data format

D4.1 & D3.6

NFRQ-QR-10 Vehicle Data
Model & Data

Format

PS Test must provide Vehicle data in the
right data model and the right data

format

D4.1 & D3.6

NFRQ-QR-11 Surveys Data
Model & Data

Format

PS Test must provide Survey data in the
right data model and the right data

format

D4.1 & D3.6

18

3.1.1.3 IoT platform requirements
This section presents the requirements related to the IoT platform.

[Note that these requirements are mostly concerning what is expected from the IoT platform.]

Table 4: Versailles Pilot site IoT platform requirements

ID Title Description Source

NFRQ-IOT-01 Platform
Availability

The IoT platform must be available when
running test sessions. (M19)

D2.3 & D3.2

NFRQ-IOT-02 Platform
Availability

The IoT platform must remain available
after test sessions for data

collecting.(M36)

D3.2

NFRQ-IOT-03 Platform feature The IoT platform must provide pub/sub
and discovery mechanism

D3.2 & D3.6

NFRQ-IOT-04 IoT Platform
standard

The IoT platform must provide standard
oneM2M implementation

D2.3

NFRQ-IOT-05 Platform Storage
Capabilities

The IoT platform must provide storage
means until data are collected by the pilot

site.

D3.6

NFRQ-IOT-06 Data logging The IoT platform must provide logging of
events.

D4.1

NFRQ-IOT-07 Data
synchronisation

The IoT platform must be synchronised
with any device or vehicle of the

Versailles PS.

D4.1

NFRQ-IOT-08 Data
synchronisation

The IoT platform must add a time stamp
upon data/measure reception.

D4.1

3.1.1.4 Other non-functional requirements
This section includes:

- Security requirements

Table 5: Versailles pilot site non-functional requirements

ID Title Description Source

NFRQ-NF-01 Data privacy All collected data including (surveys) must
be anonymised before storage.

D6.9

3.1.2 Design rationale

The design decisions are guided by the following use cases of the PSTS:

- Uploading data from Versailles pilot sites
- Browsing, searching data
- Storage of various type of data
- Upload tasks monitoring
- Users and profiles management
- Downloading data

19

- Selecting and sending data to the CTS

3.2 Global architecture

This section presents the essentials of Versailles pilot site system architecture, including main API
components, services and functionalities.

Figure 4: Versailles Pilot Site Test Server architecture

3.3 Components architecture

This section presents the detailed components architecture.

3.3.1 Data upload components

This section describes the main data collection components that will be deployed to acquire PS test
data. It is not about the data collection by the devices, but how devices, platforms and other
sources’ data are uploaded to the Test Server Platform.

The following list summarises the collected and uploaded data, and describes the types of data
format and the container file type:

 Vehicle data (CAN): JSON file(s) containing the parameter list agreed with WP4

 CAM data: ASCII file containing ETSI CAM encoded as XER encoding rules, and as UPER
encoding rules

 IP and ARP packets: Pcap file containing all CAM and other ETSI messages on 802.11-OCB
and all IP and ARP messages

 IoT data: JSON files compliant to oneM2M data containing the data related to each use case

3.3.1.1 IoT platforms

Following the oneM2M standard, platforms implementing it act as a CSE (Common Services Entity)
and expose a set of functions (data storage, discovery, etc.). Data generated by devices and stored in

20

the platform can then be consumed by applications depending on the provided service. In order to
make data available to other applications, each application can store the generated outputs in the
oneM2M platform. Therefore, for the evaluation, PSTS can be considered as an Application Entity by
the oneM2M platform that has the rights to access to all stored data.

Interactions with the platform are based on the REST architectural style in order to facilitate the
development of services and increase interoperability with devices. This architectural style considers
each physical or logical entity as a resource having a remotely accessible representation. Each
resource is uniquely addressable via a Uniform Resource Identifier (URI). For the interaction with the
oneM2M platform, HTTP protocol can be used to manage resources.

For data collection, oneM2M standard defines different procedures:

- Request/Response: the requester sends a request to the platform in order to retrieve a
specific resource. Using HTTP protocol, the request is a GET request with the URI of the
requested resource, and the returned response contains the representation of the
requested resource;

- Subscription/Notification: the requester subscribes to the resources collection in order to
track changes (e.g. creation of a resource) in the oneM2M platform. The requester creates a
specific resource called subscription in the tracked collection. This resource contains the
address of the subscriber. In the case of a resource creation, the oneM2m platform sends a
notification to the subscriber containing the representation of the created resource;

- Discovery: the requester sends a discovery request that allows discovering resources
residing on the oneM2M platform. The discovery procedure is based on a retrieve (GET
through HTTP protocol) request where the URI includes the root resource from where the
discovery begins. The result of the request is a list of all child resources under the root
resource. When the filterCriteria parameter is specified in the URI, the result is reduced to all
specific child resources under the root matching the filterCriteria condition.

For the evaluation procedure, the subscription/notification procedure can be used when the PSTS
requires data in real-time. In this case, in order to get data stored from all devices and services in
oneM2M platform, the PSTS shall create the subscription resource and specifies the endpoint where
to receive notifications in all collections. Otherwise, if there is no requirement regarding receiving
resources in real-time, the PSTS can use the discovery procedure to retrieve a set of data matching
specific conditions. Before data ingestion and processing, collected resources are stored on a local
server.

For structuring resources, oneM2M standard defines a resource tree. For Versailles PS, the global
resource tree regarding the car-sharing service is depicted by Figure 5. The structure is based on the
separation of resources by data and service types (parking slots, charging spots, vehicles, car sharing,
etc.).

21

Figure 5: Global overview of oneM2M resource tree for Versailles PS

Considering the global structure of the resources tree for the Versailles PS, the parent resource for
parking slots data (Figure 6) is AE_PARKINGSLOTS. This resource contains a first level of containers
related to each parking (e.g. CNT_PARKING-1). Then, a second level related to Parking slots (e.g.
CNT_SLOT-101). The third level of containers is DATA containing slots data (CIN resources).

Figure 6: Structure of Parking Slots Data for Versailles PS

For instance, in the case of an occupied slot, data can be as follows:

{
 "SlotStatus": "OCCUPIED",
 "LicensePlate": "AP-001-VE"
}

Under the DATA container, each new data is stored as a CIN (Content Instance) resource in the
oneM2M platform. For the previous example, the CIN resource can be as depicted bellow where

22

CON attribute contains the raw data:

"m2m:cin": {
 "rn": "cin_5634606628112954",
 "ty": 4,
 "ri": "/server/cin-5634606628112954",
 "pi": "/server/cnt-7621087546889705752",
 "ct": "20180328T145038",
 "lt": "20180328T145038",
 "et": "20180328T145038",
 "st": 0,
 "cnf": "application/json",
 "cs": 39,
 "con": "{\"SlotStatus\": \"OCCUPIED\",\"LicensePlate\": \"AP-001-VE\"}"
}

When the Subscription/Notification procedure is used, the subscriber receives a notification for each
new data. For instance, in the case of new parking slot data (e.g. parking 1, slot 101), the notification
is as follows:

{
 "m2m:sgn": {
 "nev": {
 "rep": {
 "m2m:cin": {
 "rn": "cin_5634606628112954",
 "ty": 4,
 "ri": "/server/cin-5634606628112954",
 "pi": "/server/cnt-7621087546889705752",
 "ct": "20180328T145038",
 "lt": "20180328T145038",
 "et": "20180328T145038",
 "st": 0,
 "cnf": "application/json",
 "cs": 39,
 "con": "{\"SlotStatus\": \"OCCUPIED\",\"LicensePlate\": \"AP-001-VE\"}"
 }
 },
 "rss": 1
 },
 "sud": false,
 "sur": "/server/server/AE_PARKINGSLOTS/CNT_PARKING-1/CNT_SLOT-101/DATA/SUBSCRIBER "
 }
}

The data hierarchies, relevant for applications consuming the data from the OneM2M platform, are
described below:

23

Figure 7: Versailles AE_VEHICLES hierarchy

Figure 8: Versailles AE_PARKINGSLOTS hierarchy

24

Figure 9: Versailles AE_CHARGINGSPOTS hierarchy

Urban driving

The parent resource for the urban driving slot is AE_URBAN_DRIVING. The URBAN_DRIVING
Application Entity consists of AE_URBAN_PEDESTRIAN and AE_URBAN_BICYCLE containers as it is
shown below.

Figure 10: Versailles URBAN_DRIVING Application Entity

The AE_URBAN_PEDESTRIAN will contain the subscriptions of pedestrians and the
AE_URBAN_BICYCLE container will contain the subscriptions of bicycles respectively. An example of
a subscription is shown below.

Figure 11: Versailles AE_URBAN_DRIVING containers

25

After a successful subscription, the data will be sent in JSON format according to oneM2M API
standard rules. The communication will take place between a pedestrian’s smart-phone and the
oneM2M server for the pedestrian urban driving use case and between the bicycle ECU and the
oneM2M server for the bicycle case. The hierarchy of the urban driving application entity is depicted
in Figure 12.

Figure 12: Versailles AE_URBAN_DRIVING hierarchy

3.3.1.2 Vehicle data
All the necessary vehicle data will be published at runtime and available in the OneM2M platform
(vehicles application entity).

3.3.1.3 Surveys data
The tool to be used on the French pilot site has to be decided by WP4. SoSci could be used to create
the Versailles’ user acceptance tests. The results will be collected and uploaded to the SoSci Cloud
Platform as a consolidated .csv file. This file can be downloaded later from the SoSci Cloud Platform
through a sign in process. Then, this .csv file can be uploaded to Versailles Pilot Site Test Server
manually and be available for further data analysis. All data collection and storing will comply with
the General Data Protection Regulation (GDPR), EU016/6791.

3.3.1.4 V2X messages data
In the VFLEX vehicle prototype there are three distinct means of collecting and uploading data to the
cloud (PSTS). Firstly, the CAM messages generated by the PC-AD entity in VFLEX are sent to the
cloud. These CAM messages are formed by the PC-AD by using, among others, data that circulates
on the CAN network(s) in the car. Some of the CAN parameters may be logged as part of the CAM
message logging in the OneM2M platform.
The CAM messages sent to the cloud are formatted according to CAM specification, and using XER
encoding rules. Secondly, the IP-OBU entity in the VFLEX collects the data packets circulated on
Ethernet and on 802.11-OCB links (CAM messages, and all IP and ARP messages); this data is stored
in a local file formatted according to the pcap format; the file is captured using the commands tshark

1 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32016R0679

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32016R0679

26

and tcpdump; this file may be sent to the cloud as well, depending on the requirements. Thirdly, a
special entity in the vehicle collects more data in the car.

3.3.2 Data processing components

The purpose of this paragraph is to detail the raw data processing: data preparation, quality check,
filtering, analysis, enrichment, metadata generation and storage.

Note that at PSTS level, only mandatory quality check and filtering are performed. More advanced
filtering, processing, calculation and enrichment treatments are performed by the technical
evaluation task on data gathered from the Centralised Server.

The Figure 13 outlines the process that will be followed by the Versailles PS:

The data collection process will collect and group all test data related to a specific test scenario or
test session. Then data are described and annotated. Finally, according to the test data interface
defined in the data collection methodology, a Test Data archive is created and stored.

Depending on the type of data collected, several processing tasks will be performed in order to
provide clean and ready to use data to the evaluator.

Figure 13: Test data collection and pre-processing on PS Versailles

Figure 14: Test data sources and flows in PS Versailles

27

3.3.2.1 Analysis
The data stored in the pilot site will be compliant with the OneM2M model for the IoT data and the
ETSI ITS-G5 standard for V2X data.

3.3.2.2 Quality check
The aim of data quality is to check that the data can be useful and ready for processing. This is done
by checking the following items:

 Assessing and quantifying missing data

 Controlling data values and units of measure

 Checking that all the data are synchronised

 Checking that the data are timestamped

 Checking that the data are compliant to the predefined data model and data format

 Checking that the data are clearly identified by station id and application id

3.3.2.3 Processing and enrichment
At the level of PS site, processing and enrichment is limited to providing mandatory data. There is no
calculation of one of the following: Events detection, Situation, indicator calculation.

3.3.2.4 Metadata definition
At the level of PS Versailles, Metadata definition will be limited to providing a complete description
of the Test Data API described in D3.6.

3.3.3 Data storage

3.3.3.1 Raw data storage
There is no raw data storage. Refer to section 3.3.1.1 IoT platforms.

3.3.3.2 Processed data storage
Processed data will be stored and indexed in a PS test server.

The Figure 15 represents the data storage means on the French pilot site:

Figure 15: Data storage means on the French PS

The PS test server will contain two distinct types of storage:

 A database and a file system for raw data, logs and derived data

28

 A database (FOT optional) for test data

The “Descr. and Metadata Database” shown in Figure 15 contains all the information extracted from
the “description.xml” (test data metadata) described in D3.6.

29

4 Brainport pilot site specificities

This section presents the architecture of the Brainport Pilot Site Test Server (PSTS). The PSTS is the
Automated Data Analysis (ADA) server environment from on https://ada1.tno.nl/autopilot. All data
from the pilots of Use Cases for Platooning, Car Rebalancing, Highway Pilot and Automated Valet
Parking will be uploaded to the ADA repository. The pre-processed data will also be accessible from
ADA and made available to the Central Test Server described in section 8.

The architecture, rational and requirements are based on the common approach to data logging,
analysis and evaluation for the use cases of the PSTS, as specified in the
“AUTOPILOT_CommonLogFormatDescription_extension”, which is an extension of the
“InterCor_CommonLogFormatDescription”. Documents and related specification documents are
provided on ProjectPlace 2.

4.1 Architecture design rationale

This subsection presents the rationale of the global design, i.e. it describes and justifies the main
design decisions. The requirements and constraints define what the project expects from the
architecture.

4.1.1 Non-functional requirements

Requirements below are the most important non-functional requirements for the Brainport PSTS in
order to ensure an optimal integration into the global AUTOPILOT project.

4.1.1.1 Design constraints

Table 6: Brainport pilot site design constraints

ID Title Description Source

NFRQ-DC-01 Data
uploading

PSTS should provide a facility to manually and
automatically upload log data in common formats

D3.6

NFRQ-DC-02 Common Log
Formats

PSTS should be able to manage log data in
predefined common formats, as defined in section

3

D4.1

NFRQ-DC-03 Structured
data

PSTS only allows uploading of structured log data,
as defined in section 3.

D3.6

NFRQ-DC-04 Data Storage PSTS should use a database to store test data
descriptions

D3.6

NFRQ-DC-05 Data access PSTS should provide access to the pre-processed
data

D3.6

NFRQ-DC-06 Data access PSTS should provide access to the pre-processed
data for uploading to the Central Test Server

D3.6

NFRQ-DC-07 Data quality All applications providing logging, and all log data
provided, shall be time synchronised

D4.1

2 “AUTOPILOT_CommonLogFormatDescription_extension” and related descriptions and
specifications, ProjectPlace: [Pilot sites | Brainport | Evaluation],
https://service.projectplace.com/pp/pp.cgi/r1663184828

https://ada1.tno.nl/autopilot
https://service.projectplace.com/pp/pp.cgi/r1663184828

30

NFRQ-DC-08 Data quality All data shall be logged with timestamps in UTC in
milliseconds or higher precision.

 3

NFRQ-DC-09 Data quality Only log data of the same message type can be
provided in a single log file

3

NFRQ-DC-10 Data quality All stations, IoT devices, IoT services, IoT platforms
and applications have a project-unique identifier

3

4.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:

- Performance and Scalability requirements
- Availability and Reliability requirements

Table 7: Brainport pilot site non-functional quality requirements

ID Title Description Source

NFRQ-QR-01 Data Storage PSTS must provide enough storage space. D3.6

NFRQ-QR-02 Data Storage
/ Backup

 PSTS must provide a secured storage and backup to
avoid data loss (RAID1).

D6.9, D3.6

NFRQ-QR-03 Data
identification

All provided data must be easily identified as
specified in the common formats, as defined in 3

D4.1 & D3.6

4.1.1.3 IoT platforms requirements
This section presents the requirements related to the IoT platforms.

Table 8: Brainport pilot site IoT platform requirements

ID Title Description Source

NFRQ-IOT-01 Platform feature The IoT platform must provide pub/sub
and discovery mechanism

D3.2 & D3.6

NFRQ-IOT-02 Platform
Storage

Capabilities

The IoT platform must provide storage
means until data are collected by the Pilot

Site.

D3.6

NFRQ-IOT-03 IoT Platform
standard

The IoT platform(s) must provide data
logging of the standardised common IoT

messages as defined in Task 2.3

D2.3

NFRQ-IOT-04 Data Logging The IoT platform(s) must provide unique
identifiers with every IoT message as

defined by the IoT device that generated
the IoT message

D4.1

NFRQ-IOT-05 Data
management

The IoT platform must implement the
“Store and Share” paradigm with data

historisation

4.1.1.4 Other non-functional requirements
This section includes:

- Security requirements

31

- Legal requirements

Table 9: Brainport pilot site non-functional requirements

ID Title Description Source

NFRQ-NF-01 Security The PSTS must implement some levels of
assurance for authentication

NFRQ-NF-02 Legal The PSTS should meet GDPR
requirements asset in AUTOPILOT

D6.7

NFRQ-NF-01 Data privacy All collected data including (surveys) must
be anonymised before storage.

D6.7

4.1.2 Design rationale

The design decisions are guided by the rational for the approach in section 3:
- Logging is primarily collected and stored for validation and evaluation.
- Only structured logging is accepted and stored.
- Raw sensor data is not stored, only detections or interpreted data.
- Logging, storage and pre-processing is supported for common logging as defined in section 3

and D4.1.
- Logging is provided in files containing log items, such as IoT messages, of the same message

type.
- Logging distinguishes logging of communication, vehicle data, application and control logic.
- For communication logging either the complete messages are logged as specified by the

communication standard, or the message identification information is logged.
- Logging is uploaded and pre-processed per use case and per session for validation or pilot

test run.
- The Automated Data Analysis (ADA) toolset is applied for processing the log data. ADA

contains predefined scripts, as described in the following subsections.
- The results of ADA processing are provided together with the processed log data in a data

base per experiment. This database can be uploaded by the CTS and partners such as the
evaluators, for further data analyses and evaluations

4.2 Global architecture

The Brainport pilot site implements a distributed approach to data management. The use cases will
use different IoT platforms, IoT devices, cloud services and automated vehicles. Figure 16 shows
some of the types of platforms, devices and services as an example. Data will be collected and stored
in multiple data management systems before uploading the data to the PSTS.

32

Figure 16: IoT platforms and services in the Brainport pilot site

Different IoT platforms are used in various combinations for the different use cases. The Sensinov
oneM2M platform as the central IoT platform, and IoT Watson, FiWare and Ocean are used as
federated IoT platforms. Cloud services and platforms are connected for example for Traffic
Management and Control, Platooning service, Highway Pilot anomaly detections, HD Map and ADAS,
crowd monitoring, parking spot detection, car and ride sharing, and route planning. Different
automated and cooperative vehicle platforms are used, each with specific implementations of in-
vehicle IoT platforms.

Figure 17 shows a high level architecture for collecting, uploading, pre-processing and analysing log
data from vehicles, vehicle IoT platforms, (federated) IoT platforms, IoT devices and cloud services.
Log data relevant to evaluations are converted into common log formats and uploaded to the PSTS.
The Brainport PSTS consists of a PostgreSQL data base management system, that is structured in
data bases per use case and pilot or test session.

Figure 17: High-level architecture of the Brainport Pilot Site Test Server

Once all data from a single test session is uploaded, including the data from all vehicles, IoT devices,
IoT platforms and cloud services involved in this test session, pre-processing is executed. The pre-

33

processing consists of one or more data analysis steps such as data quality validation or sanity
checks, detection of situations and events, and the calculation of indicators. The scope and output of
the pre-processing may differ per use case, and subject alignment with (technical) evaluations in
work package 4. All outputs from the PSTS pre-processing will be provided to the CTS in the form of
PostgreSQL database dumps, including pre-processing log data, data analyses results, data quality
reports, vehicle tracks, application events and actions, situations and generic indicators.

4.3 Components architecture

4.3.1 Data repository

The PSTS is accessible to partners via a web interface on https://ada1.tno.nl/autopilot/. Figure 18
shows the home page.

Figure 18: Brainport PSTS web interface on https://ada1.tno.nl/autopilot

https://ada1.tno.nl/autopilot/
https://ada1.tno.nl/autopilot

34

4.3.2 Data upload components

The web interface of the repository provides access for uploading log data automatically. The data
provisioning section in Figure 18 links to Figure 19 on the following page which explains:

 The upload process with an example script to upload data automatically from any data
source on the internet.

 Explanation how to organise log data into experiments.

 A section to define the experiment and, once all data of an experiment are uploaded,
trigger the automated processing of the log data for the experiment analysis.

Figure 19: Brainport PSTS web interface for data uploading

Every pilot site and use case has its own folder structure to organise log data. This folder structure is
only accessible by the use case partners. A partner may also have a separate folder structure. The
log folders are not accessible to other partners.

Log data is organised in experiments. An experiment is a single pilot test sessions or test run. All log
data should be uploaded into a single experiment folder. The web interface allows the uploaded
data to be viewed. The repository does not support sftp to upload or access log data.

4.3.3 Data processing components

Figure 20 shows the data processing flow for Automated Data Analysis (ADA) of the log data for an
experiment. The process consists of six steps that will be explained in the following subsections.

35

Figure 20: Brainport PSTS Data processing steps for Automated Data Analysis (ADA)

4.3.3.1 Quality check
The first three steps in Figure 20 are data quality checks.

1. The log data is first check on compliance to the parameter and file format specifications in
section 3. This includes the availability of mandatory parameters, valid encoding of message
payloads, value ranges.

2. The sanity and plausibility of basic station or device facilities are checked in the second step.
These include the sanity or plausibility assessment of:

a. Time offsets and time synchronisation between devices, components and logging
units.

b. Vehicle kinematics and the consistency between position, speed and accelerations
from vehicle sensors and control systems, absolute (GPS) positioning systems,
relative positioning systems, and target or object detection systems.

c. Reconstruction of trajectories of devices and vehicles.
d. Communication performance, such as the kinematic data in sent messages, relative

positions of received messages, packet delivery ratios, effective communication
ranges, time delays between generation, sent and reception timestamps.

3. The sanity and plausibility of application and control logic is checked. Known event locations
are checked against vehicle trajectories to detect every vehicle passing. In the opposite
direction every logged vehicle event is checked for consistency with internal and external
event data. These checks are specific to applications and use cases.

The ADA processing tools do not attempt to detect any missing measurements other than missing
mandatory data. ADA tools do not replenish any missing data.

36

4.3.3.2 Analysis
Step four in Figure 20 can be used to resample and smooth continuous parameters, and inserted as
‘new’ parameters in the repository, to ease further analysis. More often, however, such resampling
is only executed with specific analysis scripts and not inserted into the repository.

4.3.3.3 Processing and enrichment
In step five, events and actions are detected from the logged application and control logic, and from
the vehicle trajectories and vehicle passes detected in step three. Events, actions and situations are
defined per use case and application.

In step six a basic set of predefined indicators are calculated for the events and actions detected in
step five. Indicators that are calculated are, for example, the communication performance
parameters from D4.1 such as communication latency, packet delivery ratio and effective
communication range.

4.3.3.4 Metadata definition
Meta data are provided for the experiments, time periods, involved devices and their trajectories,
events and indicators.

4.3.4 Data storage

Data is stored in PostgreSQL data bases per experiment. Data is stored in the structure defined in

section 3. The data bases used for ADA analysis are not accessible by partners. The resulting
database is provided as a database dump, including all logged data relevant to the ADA processing
and the results of the ADA processing.

4.3.4.1 Raw data storage
Raw data, as mentioned in D3.6, is all logged data received from pilot experiments. All data from a
single experiment is stored in a separate folder on the repository.

4.3.4.2 Processed data storage
Processed data is stored in a PostgreSQL data base per experiment.

4.3.5 Data access

Data access is controlled by access codes per pilot site, use case and partner.

Data can be accessed via the website (Figure 18) in the “Experiment Results” and “Evaluation
Results” sections. The results can be accessed per experiment as database dump file for
downloading and local processing, or in specific views, such as the data quality reports, animations,
result summaries and data plots.

37

5 Livorno pilot site specificities

This section presents the Use Case managed by the Livorno pilot site, and the specific architecture of
the pilot site components.

5.1 Architecture design rationale

This subsection presents the rationale of the global design, i.e. it describes and justifies the main
decisions of design. The requirements and constraints define what the project expects from the
architecture.

5.1.1 Non-functional requirements

Requirements below are the most important non-functional requirements this pilot site will comply
(or adhere to), in order to ensure an optimal integration in the global AUTOPILOT project.

5.1.1.1 Design constraints
From an architecture standpoint, a constraint is an architectural design or implementation decision
that has been selected to be treated as if it were a formal requirement.

Table 10: Livorno pilot site design constraints

ID Title Description Source

NFRQ-DC-
01

Networking PSTS must be connected to the Internet. D3.6

NFRQ-DC-
02

Networking PSTS must be connected to the PS VPN with a
static IP address

D3.6

NFRQ-DC-
03

IoT PSTS must be able to send HTTP/GET request
to the oneM2M platform.

D3.6

NFRQ-DC-
04

IoT PSTS must be able to parse the response to
the GET with a function like JSON.parse().

D3.6

NFRQ-DC-
05

Data collection PSTS must be able to store the data requested
to the oneM2M platform.

D3.6

NFRQ-DC-
06

Data collection PSTS must be able to store the data sent from
devices with local storage (OBU/RSU, etc.) via

FTP.

D3.6

NFRQ-DC-
07

Data collection PSTS can enable manual collection of test data
using hard drive, flash drive, USB key

D3.6

NFRQ-DC-
08

Data Storage PSTS must use a database to store test data
descriptions.

D3.6

NFRQ-DC-
07

Data Transfer PSTS must allow sending stored data to the
CTS by FTP.

D3.6

5.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:

- Performance and Scalability requirements
- Availability and Reliability requirements

Table 11: Livorno pilot site non-functional quality requirements

ID Title Description Source

38

NFRQ-QR-01 Data Interface PSTS must send the Test Data according
to interface defined by CTS (tar file and

description file)

D3.6

NFRQ-QR-02 Data Storage /
Backup

 PSTS must provide a secured storage
and backup to avoid data loss.

D3.6

NFRQ-QR-03 Data Storage PSTS must provide enough storage
space.

D3.6

5.1.1.3 IoT platforms requirements
This section presents the requirements related to the IoT platforms.

Note that these requirements mostly concern what is expected from the IoT platform. Some of them
will drive the way the platform is used.

The security aspects of oneM2M platform are based on the following features:

- Services and APIs oneM2M are exposed with SSL (HTTPS)
- Authorisation mechanism based on credentials (username/password) of a specific user

(tenant)
- Creation of Access Control Policy (ACP) for each Application Entity (AE)

Table 12: Livorno pilot site IoT platform requirements

ID Title Description Source

NFRQ-IOT-01 compliance The IoT platform must be compliant to
the OneM2M standard - Release 2

D2.3, D3.6

NFRQ-IOT-02 Network Resources must be identified by URI in
separate way from IP addressing

D2.3

NFRQ-IOT-03 Network The IoT platform should be IP based
(irrelevant the version, IPv4 or IPV6)

D2.3

NFRQ-IOT-04 Network The IoT platform must be network
independent

D2.3

NFRQ-IOT-05 SW architecture The IoT platform must support the REST
approach

D2.3

NFRQ-IOT-06 interoperability The IoT platform interfaces towards the
applications (REST APIs) should be
compliant with oneM2M standard

D2.3

NFRQ-IOT-07 management IoT platform must support full device
and subscription management

D2.3, D2.5

NFRQ-IOT-08 Protocols The IoT platform should implement
HTTP/COAP/MQTT transport protocols

D2.3

NFRQ-IOT-09 Data
management

The IoT platform should implement the
“Store and Share” paradigm with data

historisation

D2.3, D3.6

NFRQ-IOT-10 Security The IoT platform should implement
some levels of assurance for

authentication

D2.3, D3.6

NFRQ-IOT-11 Privacy by design Identifiers used for communication in
the M2M System should not be directly
related to the real identity of either the

D2.3, D3.6

39

device or its user.

5.1.1.4 Other non-functional requirements
This section includes:

- Security requirements
- Legal requirements

Table 13: Livorno pilot site non-functional requirements

ID Title Description Source

NFRQ-NF-01 Security The PSTS should implement some levels
of assurance for authentication

D1.9

NFRQ-NF-02 Legal The PSTS should meet GDPR
requirements

D4.9

5.1.2 Design rationale

This section presents the major design decisions for the Livorno PS.

5.2 Global architecture

This section presents the essentials of Livorno pilot site system architecture, including main API
components, services and functionalities.

Figure 21: Data Management Global architecture at Livorno pilot site

5.3 Components architecture

This section presents the detailed components architecture.

5.3.1 Data upload components

The data collection components and raw data acquired are described in the following subsections.

40

The focus is about how devices, platforms and other sources data are uploaded to the test server
platform.

5.3.1.1 IoT platforms
Since the Livorno PS IoT Platform is compliant to the OneM2M standard, it is based on a “Store and
Share” resource-based paradigm. Thus, data produced during the piloting may be made available on
the platform to the other applications, including uploading service of raw data in the PSTS.

The data are downloaded from the IoT platform with a customised function that combines REST
methods (notably GET) with filters able to select time intervals, use cases and devices.

The IoT raw data are permanently stored in the IoT platform and can be accessed and downloaded
any time. The downloaded data after filtering and quality checking are uploaded to the PSTS. No
local storage between these two ICT infrastructures is maintained. The overall operations of data
transferring will be performed by a human operator.

The data inside the PS IoT platform are structured according to the resource tree shown in Figure 22,
Figure 23 and Figure 24.

All the devices with a role in the experimentation have a virtual representation on the oneM2M
platform, notably the associated container and sub-container resources have specific attributes.
Those attributes are both metadata describing the digital object itself, and the values of the
variables of that object, which are called “content”.

Every time an IoT device publishes new data on the OneM2M platform a new “content instance” is
generated, representing the actual status of that device.

All the “content instances” are stored in the internal database with a unique resource ID. They can
be retrieved from other consumers, including PSTS with simple REST methods (notably GET, see
D3.6).

In the Figure 22, Figure 23, Figure 24 the “label” metadata are represented by blue tags. Those
tokens are used to add meta-information to resources that can be used for example for discovery
purposes when looking for particular resources that one can "tag" using that label-key.

Note that structuring the data, as described here, is essential for IoT platform conception and
configuration, and also for applications consuming data published by the devices into the IoT
platforms. These inputs must be used as requirements for IoT platforms and applications and
represent also a proposal for the semantics for the “smart roads” vertical domain.

41

Figure 22: Data tree structure of IoT platform at Livorno pilot site (TCC and RSUs virtual entities)

42

Figure 23: Data tree structure of IoT platform at Livorno pilot site (NB-IoT DATEX2 and Crossroad virtual entity)

43

Figure 24: Data tree structure of IoT platform at Livorno pilot site (OBUs virtual entity)

5.3.1.2 Vehicle data
The vehicle data are stored during the piloting in the local in-vehicle IoT platform. In order to
overcome the storage limitations of the OBUs, the logging is performed in a binary format so called
“protobuf”.

At the end of a piloting session a specific API will decode the logs and send them to the PSTS in JSON
format using SFTP transfer over the PS VPN.

5.3.1.3 Surveys data
For the survey data, the Livorno PS will use the tools and methods indicated by WP4, once available.

5.3.1.4 V2X messages data
The V2X message are generated and collected by both OBUs and RSUs: the former will store the
collected CAMs and DENMs locally inside the in-vehicle IoT platform, the latter will publish at
runtime the DENM and CAM messages on the oneM2M platform. At the end of the piloting session
V2X messages from both kinds of ITS stations will be uploaded to the PSTS, according the
abovementioned procedures.

44

5.3.2 Data processing components

In Figure 25 the raw data processing is shown: the different sources of raw data are filtered
according to device ID, UC and time interval, then data quality is checked: only the data that are free
from errors or inconsistencies are uploaded to the PSTS. The next step involves metadata generation
using the tools provided by AKKA and finally the uploading to the CTS, where the data are stored and
available to the evaluators.

Figure 25: Data processing components at Livorno pilot site

5.3.2.1 Analysis
The data are filtered according to time intervals, use cases and devices. The data received from the
oneM2M platform with GET methods are parsed with a JSON.parse() function in order to convert the
“con” field in JSON objects array without ‘\’ characters.

5.3.2.2 Quality check
The quality check operations will be performed manually before the uploading on the PSTS: the
operations will include:

 Assessing and quantifying missing data

 Controlling data values and units of measure

 Checking that the data dynamic over time

 Guaranteeing that data fulfils specific hypotheses requirements

5.3.2.3 Processing and enrichment
The processing activities will include:

 Events detection

 PI calculation

 Data aggregation

5.3.2.4 Metadata definition
Metadata required by the CTS database are produced using the API provided by AKKA.

5.3.3 Data storage

In this section data storage components are described: filesystems, databases and data organisation.

5.3.3.1 Raw data storage
IoT raw data published on the TIM oneM2M platform are stored on a cluster of servers with
MariaDB, so called MariaDB Galera Cluster (see Figure 26). It is fully read-write scalable, comes with
synchronous replication, allows multi-master topologies, and guarantees no lag or lost transactions.
Some of its features & benefits are listed below:

- Synchronous replication

- IoT Platform data

- Vehicle data

- V2X messages

- Survey

Filtering,

Quality
check,

Processing

Upload to
PSTS

Metadata
calculation

and
definition

Upload to
CTS

45

- Active-active multi-master topology
- Read and write to any cluster node
- Automatic membership control, with failed nodes dropped from the cluster
- Automatic node joining
- True row-level parallel replication
- Direct client connections, native MariaDB/MySQL look & feel

Figure 26: Data Three-tier architecture and technologies (Source TIM Internal documentation) at Livorno pilot site

5.3.3.2 Processed data storage
The processed data (i.e. data ready for transfer to CTS) are stored in sever NAS, notably a Network-
attached storage. It is a file-level computer data storage server connected to a computer network
providing data access to a heterogeneous group of clients. The system contains more storage drives,
arranged into logical, redundant storage containers or RAID. It is configured in such a way, a single
bad block on a single drive can be recovered completely via the redundancy encoded across the
RAID set. The data are organised in archives generated by the tool provided by AKKA, which at the
same time create the archive and the metadata descriptor.

icon-db1 icon-db2 icon-db3

icon-as1 icon-as2

icon-fe1 icon-fe2

Front-end /

reverse-proxy

Back-end /

application server

Database

MariaDB Galera Cluster

MaxScale

icon-vip

46

6 Tampere pilot site specificities

This section presents the data management of the Tampere pilot site, and the related architecture.

6.1 Architecture design rationale

This subsection presents, describes and justifies the main design decisions. The following
requirements and constraints define what the project expects from the architecture.

6.1.1 Non-functional requirements

Requirements stated below are the most important non-functional requirements this pilot site will
adhere to, in order to ensure an optimal integration in the AUTOPILOT project.

6.1.1.1 Design constraints
Table 14: Tampere pilot site design constraints

ID Title Description Source

NFRQ-DC-01 Networking PSTS must be connected to the Internet D3.6

NFRQ-DC-02 Networking PSTS can enable manual collection of test
data using hard drive, flash drive, USB key

D3.6

NFRQ-DC-04 Data Storage PSTS should use a database to store test
data descriptions.

D3.6

NFRQ-DC-06 Data Storage PSTS must have a storage filesystem. GA – DMP, D3.6

NFRQ-DC-03 Data Transfer PSTS must allow sending stored data by
FTP to the CTS

D3.6

NFRQ-DC-08 Test Data
Interface

PS must send data that are compliant to
the provided description.xml

D3.6 decision
reused at PS level

6.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:

- Performance and scalability requirements
- Availability and reliability requirements

Table 15: Tampere pilot site non-functional quality requirements

ID Title Description Source

NFRQ-QR-01 Data Interface PS Test Server must send the Test Data
according to interface defined by CTS (tar

file and description file)

D3.6

NFRQ-QR-02 Data Storage /
Backup

 PSTS must provide a secured storage
and backup to avoid data loss.

D6.9, D3.6

NFRQ-QR-03 Data Storage PSTS must provide enough storage space. D3.6

NFRQ-QR-05 Data Storage PS Test Server must store IoT, vehicle
and survey data as they are provided

D4.1

NFRQ-QR-08 Data
synchronisation

All PS data sources must be synchronised
with each other (within 1 second to

enable analyses)

D4.1 & D3.6

47

6.1.1.3 IoT platforms requirements
This section presents the requirements related to the IoT platforms.

Table 16: Tampere pilot site IoT platform requirements

ID Title Description Source

NFRQ-IOT-01 Platform
Availability

The IoT platform must be available when
running test sessions.

D2.3 & D3.2

NFRQ-IOT-02 IoT Platform
standard

The IoT platform must provide standard
oneM2M implementation

D2.3

NFRQ-IOT-05 Platform Storage
Capabilities

The IoT platform must provide storage
means until data are collected by the

pilot site

D3.6

NFRQ-IOT-06 Data logging The IoT platform must provide logging of
events

D4.1

NFRQ-IOT-07 Data
synchronisation

The IoT platform must be synchronised
with the other devices at the pilot site

D4.1

NFRQ-IOT-08 Data
synchronisation

The IoT platform must add a timestamp
upon data/measure reception

D4.1

6.1.1.4 Other non-functional requirements

Table 17: Tampere pilot site non-functional requirements

ID Title Description Source

NFRQ-NF-01 Data privacy,
legal

Collected data, especially surveys, must
be anonymised before transferring it to

the central storage.

D6.9

6.1.2 Design rationale

Data collection at the pilot site enables later analysis of key performance indicators from vehicle &
IoT data. It also covers carrying out user surveys. The vehicle and IoT data are logged as .csv files of
defined formats. The files will be collected manually to a test site server, where they are checked for
quality and made available for further evaluation.

6.2 Global architecture

Figure 27 shows the architecture of the Finnish test data architecture. The data will be collected
locally by the different components, and then transferred manually to the Test Site Pilot Server,
where quality checks are performed, and from there it is transferred to the AUTOPILOT Central Test
Server.

48

Figure 27: Tampere pilot site Test Data architecture

6.3 Architecture components

6.3.1 Data upload components

The data collection components and raw data acquired are described in the following subsections.
The focus is about how devices, platforms and other sources data are uploaded in the test server
platform.

6.3.1.1 IoT platforms

The data at the IoT platform will be stored in a CSV file, and downloaded at the end of each piloting
session to the PSTS.

6.3.1.2 Vehicle data
A component has been developed that stores the vehicle data made available over DDS (Data
Distribution Service – internal communication between vehicle components) in csv files. Log data
files will be transferred manually at the end of each piloting session to the PSTS.

6.3.1.3 Survey data
For the survey data, the Tampere pilot site will use the tools and methods indicated in WP4, once
available. In case paper surveys are deemed necessary, the pilot site will transfer the data to the
selected electronic/online tool, in order to collect all data in a harmonised format (e.g. csv or Excel).

6.3.1.4 V2X messages data
V2X messages are generated and collected by the in-vehicle ITS-G5 OBUs. The in-vehicle OBU makes
the data available for other applications through DDS. The V2X message data are hence included in
the vehicle data logs. However, no CAM and DENM messages are planned to be used in the Tampere
pilot.

6.3.1.5 Other data
The mobile roadside unit, on which the traffic camera is installed, has a similar in-vehicle IoT
platform as the vehicle. A similar data collection component as for the vehicle will be used to store
the data from the roadside unit. Only events will be stored, not the actual camera images and video.
Event data is anonymous.

6.3.2 Data processing components

The data of the different data sources will be transferred manually to the PSTS using physical means

49

such as USB sticks and hard drives. The data will be stored in different directories, with names based
on the day of measurement. Additionally, the .csv data will be imported to a PostgreSQL database.
Several quality checks, both manual plots and database queries, will be performed in order to
provide a clean and ready-to-use data for evaluation.

Figure 28: Data processing components at Tampere pilot site

6.3.2.1 Quality check
Quality checking at the pilot site ensures that

- Test equipment has not experienced glitches after pre-tests and data collection continues to
work well

- Data does not contain values indicating strange system behaviour, e.g. vehicle speed above
300 km/h. If the data contains such values, such behaviour will be documented.

- Data is mainly continuous instead of having missing periods.
Additionally, during pre-testing, quality checking ensures that:

- Data cross-references exist (IDs match between tables) and data is synchronised to a
reasonable level of accuracy to enable analyses over various logs

- Data plots show consistent system and log behaviour, capturing test periods
- Example indicators such as mean speed or specified distances can be calculated.

Quality checking during pre-testing requires collaboration with analysts.

Quality testing during actual tests includes running defined database scripts after test data has been
first imported to PostgreSQL. This includes e.g. calculating logging frequencies for different signals
and seeking values outside defined normal ranges. Selected variables will also be plotted manually
to visually inspect data. Quality checking should be performed frequently during user test weeks to
ensure that data is not missed and tests do not have to be repeated.

6.3.2.2 Processing and enrichment
At Tampere pilot site, processing and enrichment is limited to providing mandatory data and
documentation to describe its format.

6.3.2.3 Metadata definition
At the level of the pilot site, metadata definition will be limited to providing a complete description
of the Test Data described in D3.6

6.3.3 Data storage

Both the raw and the imported PostgreSQL data will be stored at VTT’s servers.

6.3.3.1 Raw data storage
Regarding security, the test equipment will almost continuously be monitored by test site personnel.
Additionally, collected data poses no specific confidentiality (product or company) risks. The data
includes personal data, but of no sensitive nature, since the tests are controlled tests in specified

- IoT Platform data

- Vehicle data

- Camera data

- Survey

Transfer
to PSTS

Database
import,

Quality
check

Metadata
definition

Upload to
CTS

50

test areas, and the test subjects will have signed a consent form accepting scientific use. Therefore,
no specific measures are necessary to protect data during its collection.

After each test day, data is collected and sent to a test site server and deleted from logging
equipment (both vehicle and roadside). The data server resides within VTT’s premises, which are not
accessible to the public, and only named persons have access rights to operate the computer. After
the project ends, data will additionally be encrypted, so that even if the computer would be hacked
or otherwise accessed, the data would be extremely difficult to open.

6.3.3.2 Processed data storage
Processed data storage at the test site covers mainly the data imports to a PostgreSQL database and
cleaned raw logs, made available for evaluation. After the project ends, related database tables will
be backed up as files and stored together with evaluation/raw data and general test site
documentation. Depending on analyses, such databases could also contain key performance
indicators derived from raw data.

6.3.3.3 Metadata storage and user consent forms
Test site documentation is stored together with data that is made available for analysts. The
documentation is public within the consortium.

Consent forms signed by the test subjects are stored in a secure location, separate from log data.
The forms are kept as long as the stored log data contains personal data. In case the data is
anonymised or destroyed, the consent forms would be destroyed as well.

51

7 Vigo pilot site specificities

This section presents the use case managed by Vigo pilot site, and the specific architecture of the
pilot site components.

7.1 Architecture design rationale

This subsection presents the rationale of the global design, i.e. it describes and justifies the main
design decisions. The requirements and constraints define what the project expects from the
architecture.

7.1.1 Non-functional requirements

Requirements below are the most important non-functional requirements this pilot site will comply
(or adhere to), in order to ensure an optimal integration in the global AUTOPILOT project.

7.1.1.1 Design constraints

Table 18: Vigo pilot site design constraints

ID Title Description Source

NFRQ-DC-01 IoT PSTS must be connected to the Watson IoT
Platform™.

D2.3

NFRQ-DC-02 Data collection PSTS must be able to store data going
through the IoT platform.

D3.6

NFRQ-DC-03 Data Storage PSTS must use a database for storing and
accessing parking test data.

D4.1 & D3.6

NFRQ-DC-04 Data collection PSTS must provide tools for cleaning stored
parking data

D4.1 & D3.6

NFRQ-DC-05 Data collection PSTS must guarantee internal consistency of
the data

D4.1 & D3.6

NFRQ-DC-06 Data Transfer PSTS must allow subscribing to the parking
data coming from the Watson IoT

Platform™.

D2.3

NFRQ-DC-07 Data Access PSTS must allow access parking data via the
REST API based on unique identifiers of the

parking data sources

D2.3

NFRQ-DC-08 Data Access PSTS must allow access parking data via the
REST API based on geospatial queries

D2.3

NFRQ-DC-09 Data Format Data must be stored in the server in a
readable format following the requirements

in D4.1

D4.1 & D3.6

NFRQ-DC-10 Data model CAM, DENM and SPAT must be stored in
agreed data format and data model: ITS G5

D4.1 & D3.6

NFRQ-DC-11 Data Transfer PS must send the data collected in the local
server to the centralised server of the

project

D4.1 & D3.6

7.1.1.1.1 Design constraints of the Parking Spot Service
This section describes design constraints of the Vigo PSTS related to the Parking Spot Service. These
constraints guarantee a correct collection and storage of test data. The Watson IoT Platform™

52

should be used as a basic IoT platform and it should be connected to the IBM CloudAnt™ database
for data storing. The overview of the PSTS is presented in Figure 29. First, all data from IoT devices
are being sent to the Watson IoT Platform™. The IBM Parking Server registers itself as a subscriber to
the parking messages with the IoT platform. Every message published by IoT devices passes through
the IoT platform and is received by the server. The server checks quality and consistency of the
message and stores correct messages in the IBM CloudAnt™ database. The server also provides
interfaces for accessing existing messages.

Figure 29: Architecture of the Vigo Parking Spot Testing Server

7.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:

- Performance and Scalability requirements
- Availability and Reliability requirements

Table 19: Vigo pilot site non-functional quality requirements

ID Title Description Source

NFRQ-QR-01 Data Storage PSTS must provide secure storage for the
services information

D3.6

NFRQ-QR-02 Data Storage PSTS must provide enough storage space to
save the services information

D3.6

NFRQ-QR-03 Data
collection

PSTS must support different IoT devices D2.3

NFRQ-QR-04 Data
collection

PSTS must support data handling with a
regular time interval of five seconds

D2.3

7.1.1.2.1 Architecture quality goals of the Parking Spot Service
This section describes non-functional quality requirements of the Parking Spot Service. These
requirements should guarantee the correctness, stability and scalability of the Parking Spot Service.
These requirements are aligned with the parking service use case definition. In particular, the PSTS
must allow different data sources (e.g., parking garages) to send parking data within regular time
intervals (five seconds between consecutive calls from one IoT device). All parking data must be
securely stored.

53

7.1.1.3 IoT platforms requirements
This section presents the requirements related to the IoT platforms.

Table 20: Vigo pilot site IoT platform requirements

ID Title Description Source

FRQ-IOT-01 Platform
Availability

The IoT platform must be available during all
test sessions

D2.3

FRQ-IOT-02 Platform
Availability

The IoT platform must be available for one
week before test sessions for parking data

collecting for development purposes.

D3.2

FRQ-IOT-03 Platform
Availability

The IoT platform must remain available after
test sessions for parking data collecting

D2.3

FRQ-IOT-03 Platform
Storage

Capabilities

The IoT platform must provide enough
storage until parking data are collected

D2.3

FRQ-IOT-04 Data logging The IoT platform must provide logging of
events.

D2.3

FRQ-IOT-05 Data
synchronisation

The IoT platform must be synchronised as
any IoT device.

D2.3

FRQ-IOT-06 Data
synchronisation

The IoT platform must add a time stamp
upon data/measure reception.

D2.3

FRQ- IOT-07 Data Transfer The IoT platform must provide a way to
register IoT devices acting as data sources

for the parking information

D2.3

FRQ- IOT-08 Data Transfer The IoT platform must provide a way to
publish data to the parking data topics for

registered IoT devices

D2.3

FRQ- IOT-09 Data Transfer The IoT platform must provide a way to
subscribe for parking information topics

D2.3

FRQ- IOT-10 Data Transfer The IoT platform must provide a way to
receive parking information based on

existing subscriptions for the parking data
topics

D2.3

7.1.1.3.1 IoT platform requirements of the Parking Spot Service

This section describes the requirements of the Watson IoT Platform™ which has been selected as the
basic IoT platform for the Parking Spot Service. The IoT Platform should guarantee a safe, reliable
and scalable way for publishing and subscribing to the parking information coming from the IoT
devices.

7.1.1.4 Other non-functional requirements
This section might include for example:

- Operational and Environmental requirements
- Security requirements
- Legal requirements

54

Table 21: Vigo pilot site non-functional requirements

ID Title Description Source

NFRQ-NF-01 Data privacy Collected data, especially surveys, must be
anonymised before storage.

D6.9

NFRQ-NF-02 Data privacy All private information must be removed from
the parking data message before publishing to

the Watson IoT Platform™.

D6.9

7.1.1.4.1 Other non-functional requirements of the Parking Spot Service
The parking PSTS assumes all parking information messages do not contain any private information
and are anonymised before being sent to the Watson IoT Platform™.

Table 22: Vigo pilot site non-functional requirements of the Parking Spot Service

ID Title Description Source

NFRQ-NF-01 Data privacy All private information must be removed from
the parking data message before publishing to

the Watson IoT Platform™.

D6.9

7.1.2 Design rationale

In the Vigo pilot site there are two use cases: urban driving and automated valet parking. These two
services are going to be tested in controlled test environments. This type of testing clearly conditions
the type of logging. The part of the services and systems deployed that are in the vehicle are going
to be registered predominantly using a CAN format. The files obtained are going to be collected
manually from the vehicle and sent to the pilot site server. This server is going to also receive the
V2X log files from the infrastructure and the IoT platform. Once this data is in the server the
different files are going to be processed in order to prepare the data for the analysis defined in WP4.

7.2 Global architecture

This section presents the essentials of Vigo pilot site system architecture, including main API
components, services and functionalities.

The following chart represents the main items participating in the data collection in the Vigo pilot
site. These different items will upload the data through different interfaces to the CTAG central
server.

55

Figure 30: Vigo pilot site Test Data architecture

Once the data is uploaded to the central server, a harmonisation and quality check process is
launched according to the project requirements.

After this process, the data can be sent to a project central server to be analysed by the evaluators.

7.3 Components architecture

The following pictures describe the main components in the architecture of the two services
deployed in the Vigo pilot site.

Figure 31 describes the data management process for the service “Urban driving”. In this case it can
be observed how the main actors (camera, traffic light, traffic server and vehicle) are connected to
the IoT platform.

56

Figure 31: Data Management architecture at Vigo pilot site for urban driving

Figure 32 shows the data architecture for the service “Automated valet parking”. In this case the
main actors are the parking management service, the mobile application and the vehicle.

57

Figure 32: Data Management architecture at Vigo pilot site for AVP

7.3.1 Data upload components

This section describes the main components used for uploading data for the services in the Vigo pilot
site.

7.3.1.1 IoT platforms

The Parking Spot Service uses the Watson IoT Platform™ for communication between parking
information sources and the parking spot server. The AUTOPILOT project uses the Watson IoT
platform owned by the IBM Ireland project member. The Watson IoT Platform™ assigns a unique
identifier for each registered data provider or data subscriber. This identifier is used for publishing
and subscribing to the messages coming from/to the IoT platform.

In order to use the Watson IoT Platform™ one should create a new type of an IoT device which acts
as a source of parking information. This operation allows real parking IoT devices at the Watson IoT
Platform™ to be registered. Because of this operation, each IoT device gets an authentication token
and an authentication key. These values are used by the Watson IoT Platform™ for authentication of
all agents which can publish and subscribe messages.

In the case of the Parking Spot Service the Vigo pilot site parking garages act as a source of parking
data, and publish information to the IoT platform. From the other side the parking spot server
subscribes to all published parking messages. These messages should be verified and stored in the

58

IBM CloudAnt™ database. The following table contains settings which should be used for publishing
and subscribing the parking messages.

Table 23: Vigo Watson IoT Platform settings

ID Title Description

1 IBMReParkingTable This type of IoT devices is used for all messages which contain
information about parking tables.

2 IBMReParkingStatus This type is of IoT devices used for all messages which contain
information about occupation statuses of a parking table.

3 authentication token
/ authentication key

This parameter is used to publish / to subscribe for messages within
the Watson IoT Platform™.

4 ID of an IoT device This is a unique identifier of an IoT device of a certain type.

The Parking Spot Service should be subscribed to parking messages, check consistency of these
messages and store them in a database. In addition, the PSTS should provide a RESTful API to access
parking data. All parking messages should be aligned with the DATEX II data model format.

The parking server should support two types of data models: parking tables and statuses of parking
tables. The first model describes a group of parking spots, their location and properties. The second
type consists of a link to the parking table and its occupancy status.

The RESTful API functionality of the testing server should allow adding, updating, getting and
deleting parking tables. In addition, it should provide interfaces for adding and retrieving parking
table statuses. Access to the parking tables or statuses must be possible via unique identifiers or
geographical locations.

The architecture of the parking database should be optimised for efficient data storage and fast
querying of parking information. The database should store all original messages and build
additional geospatial indexes for geographical queries.

7.3.1.2 Vehicle data
All the data required from the vehicles will be accessed through a CAN interface and stored in the
local server.

7.3.1.3 Surveys data
All surveys data will be collected through individual forms and stored manually in the local server
complying with the General Data Protection Regulation.

7.3.1.4 V2X messages data
Both in the infrastructure (RSU) and vehicles (OBU) the V2X data will be stored following the ETSI G5
standard. Every type of message will generate a file containing all the data fields described in the
standard.

All this text files will be synchronised with the local server.

7.3.2 Data processing components

The following image describes the data processing components in the Vigo pilot site:

59

Figure 33: Vigo Data Processing components

7.3.2.1 Analysis
The data stored in the pilot site will be compliant with the OneM2M model for the IoT data and the
ETSI ITS- G5 standard for V2X data.

7.3.2.2 Quality check
The following items will be checked according to project requirements:

 Naming convention

 Data resolution and precision

 Data frequency for each measure and message stored

 ID convention established for the pilot site

 Define and check data ranges according to previous definitions. Specially focused on GPS
data

7.3.2.3 Processing and enrichment
No additional processing is going to be performed in the pilot site.

7.3.2.4 Metadata definition
The metadata will include the description of each type of test carried out and the description of the
established IDs in the pilot site.

7.3.2.5 Analysis and quality check of the Parking Spot data messages
This section describes steps for parsing, filtering and verification of the data messages used by the
parking spot service. We assume all messages are aligned with the DATEX II data format and are
represented as JSON documents. The PSTS should check the format of an input message and its
compatibility with the DATEX II data format. Parking table occupancy messages also contain links to
the corresponding parking tables. The server should check all links to other documents and
guarantee their consistency. All non-compliant data should be rejected by the server and not saved
in the database.

Injection of a new parking table should initiate an update of the current geospatial index. This index
keeps geographical locations of all existing parking spots and their groups. The index allows
retrieving unique identifiers of parking tables by their geographical location.

60

A deletion of an existing parking table should force a deletion of all related documents – status
messages for this parking table and its representation within the geospatial index.

7.3.3 Data storage

7.3.3.1 Raw data storage
Depending on the data sources the raw data will be collected in different ways. All the raw data is
going to be sent to the central local server.

7.3.3.2 Processed data storage
The processed data will be stored in the central server according to the project requirements. This
includes a file system with all the collected data accessible by the evaluators in the project.

61

8 Centralised Test Server architecture

8.1 Architecture design rationale

This subsection presents the rationale of the design, i.e. it describes and justifies the main decisions
of design. The requirements and constraints define the expectations about the architecture.

8.1.1 Non-functional requirements

Requirements below are the most important non-functional requirements the CTS must comply with
in order to ensure an optimal interoperability with pilot sites and integration in the AUTOPILOT
project.

8.1.1.1 Design constraints
From an architectural standpoint, a constraint is an architectural design or implementation decision
that has been selected to be treated as if it were a formal requirement.

Table 24: Centralised Test Server design constraints

ID Title Description Source

NFRQ-DC-01

Data transfer The CTS must provide a SFTP link to store
the test data

D3.6 decision at
PS level

NFRQ-DC-02 Data transfer The CTS must provide a SFTP link to store
the evaluation results data

D3.6 decision at
PS level

NFRQ-DC-03 Data browsing The CTS must provide an interface to
search uploaded test and evaluation result

data

D3.6 & D4.1

NFRQ-DC-04 Data storage The CTS must provide a data storage space
to store test data and evaluation results

D3.6

NFRQ-DC-05 Data upload
monitoring

The CTS should provide a monitoring
system that will enable the data uploading

process

D3.6

NFRQ-DC-06 CTS REST API The CTS must provide a REST API that gives
access to Search, Upload and Download of

test data and evaluation results.

D3.6

8.1.1.2 Architecture quality goals
This section presents two kinds of quality requirements:

- Performance and Scalability requirements
- Availability and Reliability requirements

Table 25: Centralised Test Server non-functional quality requirements

ID Title Description Source

NFRQ-QR-01 Data validation CTS must check and validate that uploaded
test data complies with the predefined test

description interface (test data xsd
interface)

D3.6

NFRQ-QR-02 Data validation CTS must check and validate that uploaded
evaluation data complies with the

predefined test description interface
(evaluation result xsd interface)

D3.6

62

NFRQ-QR-03 Data availability CTS must be available during the
AUTOPILOT project execution from M18 to

the end of M36

GA

NFRQ-QR-04 Data accessibility CTS must provide access to all the
evaluator partners

D3.6

NFRQ-QR-05 Data CTS will receive the data (test data,
evaluation result) in a zip or tar file that

must be unzipped to retrieve the metadata
information that will be used to search

through the CTS web interface

D3.6

8.1.1.3 Other non-functional requirements
This section includes:

- Operational and Environmental requirements
- Security requirements
- Legal requirements

Table 26: Centralised Test Server non-functional requirements

ID Title Description Source

NFRQ-NF-01

Data access CTS must provide an authentication and
authorisation access to stored data

D3.6

NFRQ-NF-02 Data processing Test data will be stored without any
transformation or conversion

D3.6, D3.1, D4.1

NFRQ-NF-03 Data processing Before uploading data must be
anonymised

D3.6

NFRQ-NF-04 Data processing Evaluation result will be stored without
any transformation or conversion

D3.6 & D4.1

NFRQ-NF-05 Data accessibility Test Data and evaluation result will be
provided through web interface

D3.6

NFRQ-NF-06 Data storage Test data and evaluation result are stored
locally in the CTS environment

D3.6

NFRQ-NF-07 Data storage A PostgresSQL database is used to store
the content of the description file

associated to any test data or evaluation
result

D3.6

8.1.2 Design rationale

The design decisions are guided by the use cases of the CTS:
- Uploading data from pilot sites
- Uploading data by evaluators
- Browsing, fetching, querying, searching among data
- Storage of various type of data
- Monitoring upload tasks
- Users and profiles management
- Downloading data manually (WEB API)
- Downloading data automatically (REST API)

8.2 Centralised Test Server architecture

63

This section presents the schematic system architecture, including interfaces of services and
functionalities.

Figure 34 represents the deployment of the CTS, on four specific servers:

- Application server: hosts the front-end (web interface and REST API), and the back-end (CTS
main application)

- File system server: stores the test data files
- Database server: stores the test data description
- SFTP server: receives test data uploaded by pilot sites

 Figure 34: Centralised Test Server architecture

Web client and REST API are used to browse and download test data from CTS. An uploading
application is used to upload test data or evaluation results. The red link between uploading
application and application server represents the authentication process, the uploading task
creation and the sftp information acquisition. Once sftp information is retrieved, the uploading
application connects and uploads test data files to the sftp server.

8.2.1 Functional description

This section presents a functional view of the components of the application server.

64

Figure 35 shows the main Use Cases (logical software modules) of the application server of the CTS.
Some modules can be triggered by an API, either from web interface, REST interface, or uploading
application, other modules are internal.

Figure 35: Centralised Test Server components

Here under is the layers view showing the data flow when uploading pilot site data to the CTS, when
accessing or downloading data for evaluation.

Figure 36: Components layers

65

As seen in the D3.6, the logic of the storage data flow is shown below. Received data archives are
processed by the upload component in the application server. The first step is to analyse the
description file of the archive. Its content is used to populate a database with uploaded tests and
evaluation results descriptions.

Data are then stored as test data files in a dedicated filesystem.

FOT database creation is under study. This database could be populated using uploaded dumps.

Figure 37: Schematic storage flow

8.2.2 HMI Interfaces

The following diagram summarises the interfaces with the CTS:
- Uploading data will be achieved using applications
- Accessing and managing data will be done using a web client

Figure 38 shows the applications used to upload test data and evaluation results, and details the
main pages of the web client.

66

Figure 38: CTS HMI summary

8.2.2.1 Interfaces for data upload
The procedure for uploading test data and evaluation results to the CTS is to use two applications.
Application 1 (Figure 38) will be provided to the pilot sites and the evaluators, and Application 2
(Figure 38) will be provided to the evaluators.

These applications allow selecting files, filling metadata, creating and storing archives and uploading
them to the CTS. They also allow for uploading stored archives (previously created with the
application) to the CTS.

These applications, as with the web client, require user authentication. Credentials will be provided
to the responsible at each pilot site. Administrators will be able to create new users with specific
access rights.

Note: evaluators will have the possibility to upload reworked and enriched test data (as new data),
in order to share their work, produced by modifying downloaded test data, using application 1.

Figure 39 shows the main page of Application 1 (Test data builder). All fields are mandatory to create
the test data description file. An “Add file” button opens a new page to select test data files by
browsing the filesystem and also fill the description fields associated with each test data file.

When all the information has been collected and the test data files added, the archive can be
created and stored or sent to the CTS.

67

Figure 39: Test Data Builder HMI

8.2.2.2 Interfaces for data access
CTS collected data are accessible using a web browser. Figure 40 shows how it is displayed on the
test data browser page (WebbApp page 1 in Figure 38).

68

Figure 40: CTS Web application HMI

8.2.3 REST API

In addition to the CTS Web application which enables users to search and query available data, a
RESTfull API makes it possible to give access to all the public resources available in the CTS. This
interface is based on a REST API standard and is documented by and can be discovered through the
swagger provided tools (swagger.io).

8.3 Centralised Test Server components architecture

This section presents the detailed architecture of the main components from section 8.2.

8.3.1 Data upload

This component provides the functionality to upload data and unzip the archives. Once files are
readable, it will check the completeness of the description file and its consistency with the uploaded
files. Then files are handed over to the metadata processing component.

8.3.2 Metadata processing

This component provides the functionality to process and store metadata information describing the
upload currently in process. These metadata are stored in the description database.

8.3.3 Data storage

This component provides the functionality to create repositories for each upload, to store files in
their dedicated repository, and to store the original uploaded archive in a backup repository.
Information about the path to retrieve data (repository) will be added in the description database.

According to data type, it may optionally dump the test data into FOT databases.

69

8.3.4 Evaluator browser

This component offers an interface to the evaluator for browsing available test data, using various
criteria (use case, pilot site, date, test point, various metadata fields), retrieve and download test
data.

According to data storage policy, it may optionally enable the evaluator to execute queries on the
data.

8.3.5 Download component

This component will build an archive according to an evaluator data request and make it available
for download.

8.3.6 Query component

This component will run queries built in the evaluator browser.

8.3.7 Upload evaluation results

This component provides the functionality to upload evaluation results using the evaluation result
upload application provided to the evaluators. The evaluation results are stored in the CTS database
designed for this purpose.

8.3.8 Monitor, Task manager

This component will provide a way to monitor the upload progress and status, and to check the
status of previous operations.

70

9 Conclusion

This deliverable describes the software architecture that will be put in place by each pilot site to
implement the data collection process used for the management of the test data produced by each
pilot site during the piloting activities.

A formal description of all the non-functional requirements and constraints is provided. Each pilot
site has built its own architecture, according to the use cases it will run and the specificities of the
partners involved in. Consequently, the workflows to collect and process data may differ, but the
collected data must be provided in a common data format. A harmonisation effort was done in D3.6
to share common data formats and data models, but specificities remain and are implemented in
each pilot site on a distributed platform called “Pilot Site Test Server”.

The AUTOPILOT project proposes a unique platform called a “Centralised Test Server” to upload,
share, store and browse many sorts of data, allowing the evaluators to work with harmonised data
and a convenient interface. All the test data will be uploaded into the centralised server using the
same interface. This interface unifies the way the test data and evaluation data will be transferred
and guarantees that all mandatory metadata will be provided in order to identify precisely any
shared data created during piloting activities.

The current document will be used by the architects and developer teams to define the targeted

distributed and centralised platforms. The CTS platform will be documented in the deliverable D3.8

“Implementation of Test Data Management Platform” due in M21.

