
 
 

 

Project funded by the European Union’s Horizon 2020 Research and Innovation 
Programme (2014 – 2020) 

 

                                                                                                                                                                                
 

 
 

 

 

 

 

Grant Agreement Number: 731993 

 
Project acronym: AUTOPILOT 

 
Project full title: AUTOmated driving Progressed by Internet Of Things 

 

D 2.1 

Vehicle IoT Integration Report 
  

Due delivery date: 30.06.18 

Actual delivery date: 28.06.2018 

Organization name of lead participant for this deliverable: CRF 

Project co-funded by the European Commission within Horizon 2020 and managed by the European GNSS Agency (GSA) 

Dissemination level 

PU Public X 

PP Restricted to other programme participants (including the GSA)  

RE Restricted to a group specified by the consortium (including the GSA)  

CO Confidential, only for members of the consortium (including the GSA)  



 
 

2 

Document Control Sheet 

Deliverable number: D 2.1 

Deliverable responsible: Visintainer Filippo – CRF 

Workpackage: WP 2 

Editor: Altomare Luciano, Galli Mauro, Visintainer Filippo – CRF 

 

Author(s) ς in alphabetical order 

Name Organisation E-mail 

Alén Gonzalez, Silvia CTAG Silvia.alen@ctag.com     

Alesiani, Francesco NEC Francesco.Alesiani@neclab.eu  

Altomare, Luciano CRF luciano.altomare@crf.it 

Belz, Joerg DLR Joerg.Belz@dlr.de  

Bosi, Ilaria ISMB bosi@ismb.it 

Bosma, Jan TECHN jan.bosma@technolution.nl 

Brevi, D. ISMB brevi@ismb.it  

Daalderop, Gerardo NXP Gerardo.Daalderop@nxp.com 

De Souza Schwarz, Ramon TNO ramon.desouzaschwartz@tno.nl 

Den Ouden, Jos  TU/e j.h.v.d.ouden@tue.nl 

D’Orazio, Leandro CRF leandro.dorazio@crf.it  

Galli, Mauro CRF mauro.galli@crf.it  

Kaul, Robert DLR robert.kaul@dlr.de 

Legaspi, Xurxo CTAG xurxo.legaspi@ctag.com 

Marcasuzaa, Hervee VALEO herve.marcasuzaa@valeo.com 

Markowski, Robert DLR robert.markoswki@dlr.de  

Marimuthu, Balraj NEVS balraj.marimuthu@nevs.com  

Petrescu, Alexandre  CEA alexandre.petrescu@cea.fr  

Simeon, Jean Francois CONTINENTAL Jean-Francois.Simeon@continental-
corporation.com  

Simonetto, Andrea IBM Ireland Andrea.Simonetto@ibm.com  

Scholliers, Johan VTT Johan.Scholliers@vtt.fi  

Souza Schwartz, Ramon TNO ramon.desouzaschwartz@tno.nl 

Visintainer, Filippo CRF filippo.visintainer@crf.it 

Yeung, Michel CONTI michel.yeung@continental-
corporation.com 

mailto:Silvia.alen@ctag.com
mailto:Francesco.Alesiani@neclab.eu
mailto:luciano.altomare@crf.it
mailto:Joerg.Belz@dlr.de
mailto:bosi@ismb.it
mailto:jan.bosma@technolution.nl
mailto:brevi@ismb.it
mailto:Gerardo.Daalderop@nxp.com
mailto:ramon.desouzaschwartz@tno.nl
mailto:j.h.v.d.ouden@tue.nl
mailto:leandro.dorazio@crf.it
mailto:mauro.galli@crf.it
mailto:robert.kaul@dlr.de
mailto:xurxo.legaspi@ctag.com
mailto:herve.marcasuzaa@valeo.com
mailto:robert.markoswki@dlr.de
mailto:balraj.marimuthu@nevs.com
mailto:alexandre.petrescu@cea.fr
mailto:Jean-Francois.Simeon@continental-corporation.com
mailto:Jean-Francois.Simeon@continental-corporation.com
mailto:Andrea.Simonetto@ibm.com
mailto:Johan.Scholliers@vtt.fi
mailto:ramon.desouzaschwartz@tno.nl
mailto:filippo.visintainer@crf.it
mailto:michel.yeung@continental-corporation.com
mailto:michel.yeung@continental-corporation.com


 
 

3 

 

Document Revision History 

Version Date Modifications Introduced 

  Modification Reason Modified by 

V0.1 14/11/2017 ToC L. Altomare 

V0.2 30/11/2017 Inputs from ISMB on TS IT in-
vehicle IoT platform description, 
from CTAG on ITS Spain in-vehicle 
IoT platform description, TNO on 
TS NL verification tables 

Bosi, ISMB, Alen, C-TAG, Souza 
Schwartz, TNO 

Minor modification by F. 
Visintainer, CRF 

V0.3 10/01/2018 Integrated contributions by NEC, 
IBM, TECHN, NXP, TNO, TU/e 

CRF based on partners’ input 

V0.41 21/02/2018 Updated contribution for TUe and 
TECH 

Jan Bosma, TECH 

V0.5 21/02/2018 Integrated first contribution by TS 
France; restructured TNO 
prototype IoT verification 

F. Visintainer CRF, A. Petrescu  

V0.6 28/02/2018 Integrated partners contributions F. Visintainer 

V0.61 11/04/2018 Integrated partners contribution: 
Data logging and management, 
and Conti contribution  

Visintainer F. Galli M. CRF, 
Scholliers J. VTT, Petrescu A. CEA, 
Simeon JF. Continental, Brevi D. 
ISMB, Marcasuzaa H. VALEO, Souza 
Schwartz  R. TNO, Marimuthu B. 
NEVS 

V0.7 19/04/2018 Formal revisions F. Visintainer 

V1.0 24/05/2018 Integrated chapter on data 
logging 

F. Visintainer, M. Galli, L. D’Orazio, 
CRF,  D. Brevi, ISMB 

V1.1 04/06/2018 Full draft of chapter on data 
logging 

F. Visintainer, L. D’Orazio, CRF 

V1.2 06/06/2018 Includes TNO full revision of 
related prototype chapter 
(received 6/6), cross-check and 
refinement of logging chapter 3. 
Added references to T2.5 

R. De Souza Schwarz, TNO, F. 
Visintainer, L. D’Orazio, M. Galli, 
CRF 

V1.2 08/06/2018 Added DLR, TUEIN, CTAG, VTT 
input; completed missing parts 

F. Visintainer, CRF,  J. Belz, DLR, X. 
Legaspi, CTAG, J. Scholliers, VTT, J. 
Den Ouden, TUEIN 

V1.3 11/06/2018 Edited peer review version F. Visintainer, CRF 

V1.4 14/06/2018 Modified after CERTH peer review F. Visintainer, CRF 

V1.5 28/06/2018 Modified after AKKA peer review F. Visintainer, CRF 

V1.6 28/06/2018 Integrated ISMB, DLR, NEC, TU/e, 
VTT, CEA latest updates 

F. Visintainer, CRF 



 
 

4 

V2.0 28/06/18 Final check for submission R. Bhandari, ERTICO 

 

Abstract 

This document reports the IoT integration into the vehicle within the AUTOPILOT project. The work 
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the interface with the in-vehicle system.  
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Executive Summary 

Work-package 2 (WP2) of the AUTOPILOT project focusses on the integration of  the IoT platform in 
the vehicles and other devices, to enable AUTOPILOT AD enhancement through the IoT, in the use 
cases of Automated Valet Parking, Urban Driving, Highway Driving, Highway Pilot and Car 
Rebalancing for Shared Vehicles. 

Within WP2, two specific tasks are dedicated to the in-vehicle systems: T2.1, which aims at 
integrating vehicles into the IoT world, and T2.2 which aims at the development and adaptation of 
autonomous driving functions for the intended use cases. This deliverable refers to task T2.1, whose 
scope is to allow vehicles to access and use IoT devices and capabilities, thus enabling AD functions 
enhancement of T2.2 and contribute to IoT applications such as car rebalancing.  

Based on the design carried out in T1.3 (D1.5 Initial Open IoT Vehicle Platform Specification) task 
T2.1 is dedicated to hw/sw development for the AUTOPILOT connected prototype. In particular, it 
delivers the in-vehicle IoT platform and related components, enabling the vehicle to interact within 
the AUTOPILOT Internet-of-Things. The in-vehicle components dedicated to IoT developed in the 
different AUTOPILOT sites, as baseline act as gateways between the internal network and functions 
(including Autonomous Driving) of the several vehicles, thus making the vehicle as “IoT” device 
within the whole eco-system; but in most cases AUTOPILOT in-vehicle IoT also includes the capability 
of “edge” functionalities and applications, such as environment perception; this motivates the 
naming and approach of a “vehicle IoT platform” addressed in T1.3 and continued in T2.1.  

Already in WP1, “prototype” leaders had been identified, for the definition of their own In-Vehicle 
system and its components, both concerning the IoT platform and the legacy components. In T2.1 
the same prototype leaders, jointly with the partners supplying components, are integrating the IoT 
platform on board the vehicle to contribute to the use cases which are defined at pilot site level. 
These components have been preliminarily tested within T2.1, following a basic plan as proposed by 
prototype leaders, and intended to verify the basic functionalities of the units. This will enable the 
more systematic readiness verification of T2.5 and then the piloting of IoT systems in WP3.  

Since T2.1 role is devoted to the in-vehicle integration, this task also contributed to data recording 
and management within the AUTOPILOT project, focussing on the vehicle data and defining a format 
for data recording based on WP4 requirements which is aligned with the other data recording work 
(V2X logging, application logging). A certain degree of freedom has been left to prototype 
implementation, with the condition that management procedures are aligned with T3.4 and that the 
data format is met at the end of the data transfer chain in the pilots.   

Chapter 1 introduces the concept of Internet of Things integration on the vehicles, as adopted by 
AUTOPILOT. 

Chapter 2 reports, per pilot site and prototype, the IoT implementation, giving a short description of 
the system architecture (coherently with D1.5), the individual software components constituting the 
in-vehicle IoT system, their interfaces and functional verification. 

Chapter 3 gives an overview of the recording and management of data coming from the vehicles, 
and focusses on the data format for evaluation, as defined by T2.1.  
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1 Introduction 

1.1 Purpose of Document 

Task T2.1 aims to develop and verify integration of the IoT in-vehicle platform components. This 
deliverable reports the integration of the In-Vehicle IoT platform components planned for 
AUTOPILOT prototypes.  

1.2 AUTOPILOT IoT and the in-vehicle system 

In the task T3.1 the in-vehicle IoT platform initial specifications were preliminarily provided. Partners 
agreed on the logical representation of the in-vehicle system, identifying the role and placement of 
the in-vehicles IoT platform and the main in-vehicle components interacting with it. Based on this, its 
main functionalities were identified, and are reported thoroughly in D1.5 [1]. To facilitate this 
document, it is useful to briefly recall the introductory picture (Figure 1). In particular, it shows the 
needed integration to receive information from in-vehicle components, connect with the cloud IoT 
system, but also to third party cloud services and to vehicular ad hoc networks (ETSI ITS G5). 

 

Figure 1:  In-Vehicle IoT platform (red box) with the vehicle concept scheme; source D1.5 

Another useful picture from D1.5 is Figure 2, showing the vehicle within the general IoT architecture: 
the vehicle is an IoT device, an edge computing unit and a gateway for other devices (including the 
vehicle network and its peripherals). It is a mobile node publishing and receiving contents from and 
to the IoT Platform, thanks to its connectivity capabilities (ITS G5, LTE).  
 

Cloud IoT 
system

IntraVehicle Network

In-vehicle IoT Platform

Addit. IoT
devices

VehicleAD 
control system

Existing 
sens./devices

Communicationsystem

C-ITS (G5)

Neighbour 
entities 

(vehicles/RSUs)

Existing

Project 
defined

LTE

H
o

st
 V

e
h

ic
le

Outside T1.3

3° party cloud 
services



 
 

12 

 

Figure 2:  IoT High View Architecture: conceptual separation in AUTOPILOT  

We can make a distinction between the IoT Platform as the set of functions that manages the IoT 
devices and entities, and the “Vehicle IoT Platform” as the complex entity that includes all the 
software and hardware components deployed in the vehicle. As a whole, IoT Applications may have 
a different level of integration within the vehicle: for example, a parking application can either run in 
the vehicle application container or in some smartphone connected to the vehicle. Such applications 
have typically a local processing and are then connected to the cloud counterpart to exchange 
service related information. But in general, applications that need information from a single vehicle, 
can access it through the Vehicle IoT Platform. That is why one of the key elements in T2.1 is the 
interface to the private vehicle network, and for the scope of AUTOPILOT on-site evaluation, one of 
the objectives of T2.1 is to contribute to data format definition. 
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2 In-vehicle IoT integration 

This section provides a synthesis of approaches adopted in different Test Sites, with focus on 
software components designed to obtain the on board units and components for IoT that are 
integrated in the vehicles.  

This chapter is structured in sections, according to the IoT prototypes implemented in the different 
pilot sites. In the Brainport section, sub-chapters refer to the different on board IoT 
implementations. Livorno section is unitary, as the on-board IoT platform is the same for all 
prototype vehicles. 

Each prototype section starts with a summary, including the use cases where prototype are 
involved,  how the IoT is used in the prototype, how it is implemented and the partners involved in 
the development of its IoT functionalities. Typically the implementation in a specific vehicle reflects 
the general integration scheme of T1.3 (Figure 1), is carried out by one partner, supported by 
partners providing specific components. 

Then, the software architecture scheme of implemented IoT platform is provided, highlighting the 
software components that provide core functionalities and relationship between components. 

After, brief descriptions of the main components that constitute the vehicle IoT platform follow: 
their role within the IoT, relationships with other components and main interfaces.  

Finally, verification is reported, aimed at delivering checked on-board IoT functionalities to T2.5 [2] 
and to the pilots (WP3). Therefore, verification tests are structured in tables where specific items are 
checked. Tests should regard at least basic hardware/software functionalities of the on board IoT 
platform and related components developed within T2.1; the IoT connectivity with other 
components outside T2.1, especially the in-vehicle network and other IoT systems (e.g. OneM2M 
platform); data contents with respect to the designed data model. In addition, early verifications of 
key IoT functionalities on-board the vehicle is recommended. 
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2.1 Pilot Site Finland 

2.1.1 Short summary 

The VTT prototype consists of hardware devices (i.e. environmental perception sensors, inertial 
sensors and electronically controlled actuators) which are connected to Linux machines which 
process and integrate the information. To establish connectivity with IoT services and with other 
vehicles and roadside units (ITS-G5), two separate communication system units are deployed in the 
vehicle. Figure 3 shows the software architecture scheme defined for the following use cases: 

¶ Automated Valet Parking (AVP): connects the vehicle to the AVP service which provides 
parking lot availability and allocation as well as information about other road objects in the 
vicinity. 

¶ Urban Driving: focuses on the interaction with traffic lights and legacy traffic, and on safety 

when dealing with vulnerable road users. 

 

Figure 3. Hardware integrated in the VTT prototype vehicle 

2.1.2 Software components 

Figure 4 shows the software components of the in-vehicle IoT platform of the VTT prototype vehicle 
and how they connect to the IoT cloud platform. Communication between the in-vehicle 
components is based on Data Distribution Service (DDS). 
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Figure 4: Vehicle scheme of software components, with In-Vehicle IoT platform 

The main components of the in-vehicle IoT platform are: 

¶ Communication system contains two communication system units: 

o Mobile communication unit (4G) 
o ITS-G5 unit from Dynniq. The ITS-G5 radio is used to broadcast/receive standard C-

ITS messages (CAM, DENM, SPAT, MAP).  

¶ Run-time environment  runs on the Linux machine that aggregates and processes sensor 
and IoT data to be used by IoT apps and the AD unit: 

o World model: performs functions such as sensor fusion, target tracking and road 
model computation. It essentially aggregates data coming from multiple sensors, 
V2V communication and the IoT platform to build a road object level description of 
the world.  

o Trajectory planning: software component, that performs situational analysis, 
performs reactive obstacle avoidance and calculates the target heading and velocity 
as input for the vehicle actuators.   

o Localization service: correction of GPS position using IMU. Potentially also 
improvement of location using HERE’s UWB approach. 

¶ IoT apps generate and/or consume vehicle status and application-specific data that are 
exchanged with the IoT platform.  

¶ Intra-vehicle network contains all other components outside the in-vehicle IoT platform: 

o Perception sensors: Radars, LIDARs and camera to be used for object and 

Host Vehicle 
Communication system

Perception sensors
(Radars, LIDARs, Camera)

Runtime environment

Urban driving Service

Local ization service

Autopilot Applications

World Model
(Sensor fusion, target tracker, road model)

IoT Platform

AVP Service

IF1: MQTT

IF1: HTTP requests (JSON/XML)

Trajectory 
control

4G ITSG5 

IF3: DDS IF4: DDS

IF6: DDS

Actuator control

Other Vehicle / Roadside unit

Vehicle sensors
(IMU, GPS)

IF8:DDS

IoT apps

IF5: DDS

In-Vehicle
IoT Platform

IF2: CAM/DENM



 
 

16 

environmental perception. 
o AD unit: real-time platform running control-related algorithms. 
o Vehicle sensors: other internal sensors such as IMU, and GPS. 

2.1.3 Verification 

The verification of VTT in-vehicle IoT platform envisages the following tests: 

¶ FI-VTT-1: ITS-G5 connectivity 

¶ FI-VTT-2: 4G IoT connectivity  

¶ FI-VTT-3 IoT connectivity  

¶ FI-VTT-4: Data Model – Traffic Camera object 

¶ FI-VTT-5: Data Model - Traffic light status 

¶ FI-VTT-6: Trip planning  integration 

Tests specifications are reported in the following tables. 

 

Verification test ID FI-VTT-1 (M15) 

Test Title ITS-G5 connectivity 

Link to T2.5  Anticipates ITS-G5 type verification. 

High level objective of the test Basic test regarding the connectivity between the mobile 
communications unit in the vehicle and road side unit using ITS-
G5. 

Involved software components  Communication system. 

How the test is realized  The test is performed in the lab and is used to test if the 
messages are transmitted correctly transmitted between 
different ITS-G5 devices. 

Pass test criteria  
 

Messages are correctly sent and received from one 
communication unit to another. 

Results [yes / no] Planned M19 

 
 
 

Verification test ID FI-VTT-2 (M15) 

Test Title 4G IoT connectivity: basic test in lab 

Link to T2.5 Anticipates Vehicle_safety_valet_parking and 
Vehicle_safety_urban_driving type verification 

High level objective of the test Basic test regarding the connectivity between the mobile 
communications unit in the vehicle and the IoT platform to 
verify if the messages are exchanged correctly.  

Involved software components  Communication system 

How the test is realized  The test is performed in the lab and is used to test if the 
messages are transmitted correctly exchanged between the 
vehicle and the IoT system. 

Pass test criteria  
 

Messages are correctly sent and received from one 
communication unit to another. 

Results [yes / no] Yes 
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Verification test ID FI-VTT-3 (M16) 

Test Title IoT connectivity (cellular) 

Link to T2.5 Anticipates Vehicle_safety_valet_parking and 
Vehicle_safety_urban_driving type verification. 

High level objective of the test Integration test with the IoT platform.  

Involved software components  Communication system, world model, IoT apps. 

How the test is realized  Messages are generated and travel from the mobile road side 
unit or IoT device, pass through the IoT platform and are 
received by the vehicle and made available to the in-vehicle 
DDS.   

Pass test criteria  Messages are correctly sent and received by the vehicle from 
the IoT platform, and content is made available to in-vehicle 
applications. 

Results [yes / no] Yes 

 
 
 

Verification test ID FI-VTT-4 (M16) 

Test Title Data model - traffic camera object 

Link to T2.5 Anticipates Vehicle_safety_valet_parking and 
Vehicle_safety_urban_driving type verification. 

High level objective of the test Verification of camera object data model.  

Involved software components World model, communication system, IoT apps. 

How the test is realized  Object Messages are generated by the traffic camera, and travel 
from the mobile road side unit and travel through the IoT 
platform to the vehicle, and are made available to the in-vehicle 
trajectory control. 

Pass test criteria  Messages are correctly sent and received from the camera to 
the in-vehicle applications. 

Results [yes / no] Yes 

 
 
 

Verification test ID FI-VTT-5 (M17) 

Test Title Data model - traffic light status  

Link to T2.5 Anticipates Vehicle_safety_urban_driving type verification. 

High level objective of the test Verification of traffic light status data model.  

Involved software components World model, communication system, IoT apps. 

How the test is realized  Traffic light messages are received an integrated into the world 
model and made available to the trajectory planning module.   

Pass test criteria  Messages are correctly received from the traffic lights and made 
available to the trajectory planning module. 

Results [yes / no] Planned M19 
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Verification test ID FI-VTT-6 (M18) 

Test Title Data model - trip planning integration 

Link to T2.5 Anticipates Vehicle_safety_valet_parking and 
Vehicle_safety_urban_driving type verification. 

High level objective of the test Verification of the trip planning data model and integration in 
the vehicle.  

Involved software components World model, communication system, IoT apps, trajectory 
planning. 

How the test is realized  A trip plan, is transmitted through the IoT vehicle platform, 
received by the vehicle, and taken into account for trajectory 
planning.  

Pass test criteria  Externally defined trip plan is executed correctly by the 
automated vehicle.  

Results [yes / no] Yes 

2.1.4 Data logging and management 

The data needed for the car-sharing service are sent to the service and be available for evaluation. 
Data will be logged at the service side and stored in different formats depending on the nature of 
the data (typically routes, ride-assignments, GPS positions, etc.). The collected data will be available 
for evaluation for work package. 
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2.2 Pilot Site France  

2.2.1 Short summary 

The IoT platform to be deployed in vehicle comprises several components: the Communication 
System (OBU – On Board Unit), the AD System (AD – Autonomous Driving Unit), the IHM and a few 
other computers.  An overall view of the vehicle scheme is depicted in the following figure: 

 

Figure 5: The software components for VFLEX Twizy-based in Versailles pilot site 

The On-Board Unit (OBU) is made of the following hardware modules: a hardware module dedicated 
to the 802.11 OCB communications (titled ‘Ventana’ in the figure above) and a hardware module 
dedicated to LTE communications (titled ‘mangOH Read’).  The module dedicated to LTE 
communications contains several sensors that are qualified as ‘Things’.  Since the LTE module is 
connected to the Internet, this qualifies as an ‘IoT’. 

The LTE module is a Sierra Wireless mangOH Red board. This includes a Gyroscope/Accelerometer, a 
Pressure and Temperature sensor and a Light Sensor.  The gyroscope/accelerometer sensor could be 
used for applications such as dead-reckoning with data fusion with GNSS receiver data such as to 
offer localization information in areas where GNSS data is unavailable (underground parking, tunnel, 
etc.)  It could also be used for other applications such as shock-detection for airbag triggering, for 
acceleration confirmation and communication in platooning, and others.  The Pressure sensor could 
be used for applications in need of altitude information, or as a micro-phone, or as theft intrusion 
detection, and others. The Temperature sensor could be used for slippery road warnings, and 
others.  The Light sensor could be used for other applications.  Each of the data units generated by 
these sensors can be communicated through the Internet. 
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Figure 6: Sierra mangOH Red board and schematics of IoT sensors 

2.2.2 Software components  

The software components of the IoT platform to be integrated in the vehicle have three roles: 

¶ Provide connectivity to the Internet for each computer in the vehicle that needs to be 
connected to the Internet 

¶ Provide connectivity to the vehicles nearby 

¶ Provide specific proprietary connectivity for legacy equipment such as existing, deployed 
Road-Side Units, with standard ETSI ITS-G5 

The software components are the following: 

¶ Internet Protocol version 4 and Internet Protocol version 6 addressing architectures for in-
vehicle and between vehicles. Implementations of methods of forming IP addresses, starting 
from VIN numbers 

¶ Static and potentially dynamic channel allocation software for an interference-free channel 
management in the 5.9GHz band 

¶ Connectivity manager for maintaining the LTE connection while in movement 

¶ Several protocol implementations for Internet Protocols: DHCPv6, DHCPv6 Prefix Delegation, 
DHCPv4, NAT, Babel, ICMPv6 Router Advertisement, Mobile IPv6, Mobile IPv4 with NEMO 
extensions (Network Mobility) 

¶ Protocol implementations for potentially new protocols that may satisfy needs arising during 
project execution: CAM over LTE, CAM over IP, and potentially others 

¶ Protocol implementations for backward compatibility with proprietary legacy systems: ETSI 
CAM, DENM and potentially GeoNetworking 

The software components are divided in two main parts: 

¶ Components derived from software available as open-source. Several protocol 
implementations are available as open source: Babel, DHCP, Mobile IP, NAT, NEMO, 
CAM/DENM, GeoNetworking 

¶ New software written from scratch to implement extensions and improvements: 
o Connection keeper to maintain the LTE connection up during all mobility events 
o CAM implementation for backwards compatibility with legacy equipment 
o Static formation of IP addresses from VIN numbers 
o RA-based prefix exchanges for maintaining IP connectivity between cars in a platoon 
o Others 

The software for implementation of protocols needed for backward compatibility to ETSI 
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CAM/DENM and GeoNetworking available as open source at github is the following: 

¶ Vanetza implementation  

¶ RendITS implementation 

¶ GeoNetworking implementation derived from RendITS 

¶ BTP SAP implementation 

¶ DriveITS implementation 

The analysis of the various characteristics of these software packages led to the establishment of a 
direction of development based on Vanetza.  The Vanetza open-source platform uses the BOOST C++ 
library.  This is very pertinent as it is included in the C++11 standard. 

2.2.3 Verification 

The verification of CEA in-vehicle IoT platform envisages the following tests: 

¶ FR-CEA-1: Cellular IoT connectivity – Platooning 

¶ FR-CEA-2: V2V connectivity 

¶ FR-CEA-3: V2I connectivity 
 
 

Verification test ID FR-CEA-1  

Test Title Cellular IoT connectivity - Platooning 

Link to T2.5 Anticipates IoT_platform and Vehicle_safety_platooning type 
verification. 

High level objective of the test End-to-end information exchange test between vehicle and 
oneM2M IoT platform for the platooning use case. Connectivity 
based on commercial cellular network. 

Involved software components  OEM specific components, world model, IoT bridge, vehicle IoT 
apps, communication system, IoT platform (oneM2M) 

How the test is realized  Messages are defined and generated for the platooning use case 
and travel from OEM components up to the IoT platform 
(oneM2M) in the cloud and back to the vehicle. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Basic IoT platform connectivity tested 

 

 

Verification test ID FR-CEA-2 

Test Title V2V connectivity 

Link to T2.5  Anticipates ITS-G5 type verification. 

High level objective of the test End-to-end information exchange test between AD System in 
one vehicle and AD System in a vehicle nearby. 

Involved software components  Protocol implementations on Ventana; ping and RTMaps on AD 
System 

How the test is realized  Ping first, then, eventually, messages from RTMAPS. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Planned 

Verification test ID FR-CEA-3 
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Test Title V2I connectivity 

Link to T2.5  Anticipates ITS-G5 type verification 

High level objective of the test End-to-end information exchange test between IHM (Tablet: 
Interface Homme-Machine, HMI: Human-Machine Interface) 
and Traffic Lights. 

Involved software components  Protocol implementations on Ventana; ping the RSU, ping the 
Traffic Light Controller. 

How the test is realized  Press button on IHM, turn the light Green on Traffic Lights. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Yes 

2.2.4 Data logging and management 

The data can be recorded in several ways. 

The most straightforward mechanism to record data is the use of packet dump tools. The IP-OBU is 
composed of two distinct boards: the Ventana and the mangOH Red.  Each of these boards runs an 
independent linux operating system.  It is possible to run the tshark tool on Ventana, and the 
tcpdump tool on mangOH Red.  Each of these tools can save the captures as “.pcap” files. Such a file 
contains each packet sent and received on the specified interface. The quantity of saved information 
(packet contents, time resolution, time specification, signal strength) can be specified as parameters 
in the command line. 

It should be noted that memory space should be properly allocated (memory cards, SSD disk 
extensions) in order to accommodate the large quantity of data that could be recorded by the 
packet dump tools. 

In addition to the packet dump tools, there exist a large number of software tools that can be used 
to record more data about the IP-OBU. The Linux Performance Observability Tools are illustrated in 
the following figure, with the reference to the source. 
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Figure 7: Linux Performance Observability Tools 

With respect to the communication system, the following tools are relevant: netstat, nicstat, ip, 
ethtool and iptraf. 

How data logging responds to requirements? 

Among the requirements, the minimum compliance includes the following: 

¶ The format of the records must be easily readable by a very wide range of tools (e.g. ASCII 
format, or similar). 

¶ The format of storing must be a loss-less format.  In case the data is too large, a tempting 
option is to use compression.  The compression options should be loss-less. 

¶ The data should be time-stamped. 

¶ The time should be synchronized between multiple systems. 

In addition, requirements of data recording exhibited in other contexts outside the context of 
AUTOPILOT may be relevant.  Accidents of Connected Automated Vehicles are rare, and the post-
crash analysis and results are rarely available to the publicly.  However, the analysis of the collision 
of May 2016 with the Tesla car in the United States has been publicized widely [ref 2017-
HWY16FH018-BMG-abstract.pdf].  The recommendations of the report that are relevant to the data 
recording in AUTOPILOT are the following: 

¶ Define the data parameters needed to understand the automated vehicle control systems 
involved in a crash. The parameters must reflect the vehicle’s control status and the 
frequency and duration of control actions to adequately characterize driver and vehicle 
performance before and during a crash. 

¶ Define a standard format for reporting automated vehicle control systems data, and require 
manufacturers of vehicles equipped with automated vehicle control systems to report 
incidents, crashes, and vehicle miles operated with such systems enabled. 
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How data are delivered? 

The data can be delivered in two distinct ways: 

¶ In one way, the data is continuously uploaded from the car to the server in the fixed 
infrastructure.  This allows keeping up with huge space demands. 

¶ In another way, the data should be saved in a hierarchical set of memory locations in the car, 
including at least one element of solid state and removable media (SD card, SSD device, etc.).   

¶ Specific devices (‘black’ boxes) may be used to store data, in order to be more resistant to fire, 
shock and other aggressions. 
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2.3 Pilot Site Italy  

2.3.1 Short summary 

The Italian IoT solution is characterized by devices (i.e. OEM in-vehicle components, inertial sensors, 
smartphone) that use a gateway (On Board Unit) to integrate the IoT information and to 
communicate to a Cloud server based on OneM2M platform.  
 

 
 

 
 

Figure 8: ISMB in-vehicle IoT platform in CRF prototype (PS Italy) 

The software architecture scheme represented in Figure 5 shows the concept of IoT platform 
prototype in both Italian pilot site use cases:  

¶ Highway driving: a cloud service merges the sensors measurements from different IoT 

devices as roadside sensors (e.g. pothole) or information about problems on the road (e.g. 

road works), in order to locate and characterize road hazards; 

¶ Urban driving: focuses on the interaction with traffic lights and legacy traffic, on the 

robustness of the AD functions of the vehicle, safety when dealing with vulnerable road 

users (pedestrians and bicycle), and positioning. 

In order to satisfy these use cases, the vehicle needs an on-board IoT platform to handle the various 
sources of data (IoT sensors like Inertial sensors, IMUs, etc.) with the various services (Local Dynamic 
Map-LDM, Pothole Detector, etc.). 
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The in-vehicle IoT platform provided by ISMB, offers communication interfaces to components that 
involve the following partners: TIM (provides OneM2M Cloud platform), CNIT (provides 
accelerometer sensor for the pothole algorithm), CRF and AVR (provide intra-vehicle sensors). 

2.3.2 Software components 

Figure 5 shows an overview of how the IoT platform of the Italian pilot site has to be set up in order 
to receive information from in-vehicle components and to connect with the cloud IoT Platform 
(OneM2M), also representing interfaces between the main components of this architecture. 

 

 

Figure 9: Vehicle scheme of software components, with In-Vehicle IoT platform 

The IoT in-vehicle platform of the Italian pilot site is a modular software architecture including 
Application Container and Communication System, which are deployed on the On Board Unit (OBU). 

The functional block Application Container is a lightweight approach to virtualization that developers 
can apply to rapidly develop, test, deploy, and update in-vehicle IoT platform services. 

The Communication block performs the communication between devices and external components 
(such as OneM2M platform, RSU, other vehicle).  

The “Runtime Environment” part of the OBU is composed by several software modules. As 
mentioned in chapter 4.2.3 of the deliverable D1.5 [1], they manage the following high-level 
functionalities: 

¶ Remote Management 

¶ Context Awareness 

¶ Data Management 

¶ IoT Connectors 

¶ Data logging 

o On board logging 

o Logging towards the OneM2M platform (SENSORIS) 
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In the following, a brief description of each module is provided: 

OSGi remote management tool: this is the software implementation of the Container Application, 
allows configuring the platform by adding/removing bundles, introducing the idea of remote 
monitoring and control of external application based on OSGi platform. Remote Services for OSGi 
can interact with the EventAdmin (OSGi Event Admin Internal Bus) service of the IoT in-vehicle 
platform. Through the Event Admin Internal Bus the connectors have the same communication 
interface to the bundles which they interfaced in the Application Container. 

LDM: this is the database [1] where all the information about the surroundings of the ITS vehicle are 
saved. This data are used by the local applications to react and take decisions based on the in-vehicle 
sensors or other ITS station's status (such as surrounding vehicles or infrastructure). 

LDM achieves integrated management of map information and vehicle information (functional 
requirement of Context Awareness): it contains information on real-world and conceptual objects 
that have an influence on the traffic flow. 

CoAP/6LoWPAN connector: sensors belong to 6LoWPAN network may be connected to other IP 
networks through one or more edge routers (such as Ethernet, Wi-Fi or 3G/4G) that forward IP 
datagrams between different media. 

Furthermore, CoAP is designed to use minimal resources (both on the device and on the network) 
and integrates with XML, JSON, or any data format chosen.  

This module is used to integrate with 6LoWPAN protocol data coming from additional IoT devices 
(i.e. Inertial sensors), that are used by edge applications on the OBU. 

MQTT connector: the MQTT connector supports both publishing (Send) and subscribing (Listen) to 
an MQTT broker (or server). This connector enables to integrate data to and from MQTT broker, 
which manages data from devices and sensors, with data from other sources accessible (connected 
with the functionality of IoT device adaptation and OEM communication systems). 

This module is used to integrate with MQTT protocol data coming from additional IoT devices (i.e. 
smartphone), that are used by edge applications on the OBU. 

Pothole detector: this bundle represents the implementation of the pothole detection algorithm. It 
is based on data fusion techniques in order to implement the concept of "virtual sensors". 
This module collects data from multiple sensors on the vehicle (IoT in-vehicle components or OEM 
in-vehicle components), processes the various data (in this case it could be established a threshold in 
order to be recognized or not the road holes) and sends the results of this elaboration to the cloud 
OneM2M platform or RSU or other vehicles (via communication system). 

The ά/ƻƳƳǳƴƛŎŀǘƛƻƴ {ȅǎǘŜƳέ part of the OBU, manages the following high-level capabilities: 

¶ Send and receive of CAM and DENM packets 

¶ Reception of SPAT/MAP messages 

¶ Reception and decoding of CAN messages 

¶ Managing of position and timing through the GPS hardware module 

¶ Message routing 

¶ Local Dynamic Map 

In the following, a brief description of each module is provided: 

CANBus Interface: this module reads data coming from the CAN Bus and decodes the messages 
previously defined in a DBC file defined by the vehicle vendor. This data are typically used to set the 
CAM fields that contain information about vehicle dynamics or other information (e.g. light state, 
etc.). The same module is used to decode important data coming from the in-vehicle sensors that 
are sent directly to the OneM2M platform or used by edge applications on the OBU. 
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Pos-Timing: this module reads the positioning data and timing information from the internal GPS 
receiver. This data are used to set the position on CAM and DENM messages. The timing part reads 
the time from the GPS and use the PPS hardware signal to align the NTP time server with a stratum 1 
time source. In this way, a precise clock can be distributed to all the other software modules in the 
car, providing a precise synchronization. 

CABS: this module takes data from the CANBus, position and time from Pos-Timing and creates a 
CAM message as described in the proper ETSI standard [2]. In the other hand it receives CAM 
messages coming from other vehicles and saves them on the LDM. 

DENBS: as the previous module, this software creates and save DEN messages [3] interfacing with 
the proper modules to set the data and with the LDM to save the incoming messages. 

SPAT/MAP: these messages are generated from a traffic light and SPAT/MAP module decodes them 
saving the relevant information in the LDM for further use. SPAT/MAP is just one potential technical 
feature of a cooperative ITS (C-ITS) roadside system. SPAT/MAP offers a potential channel for 
detailed information exchange between traffic systems and road users.  

Network routing:  this module manages the connectivity of all the in-vehicle modules that need 
network connectivity. Moreover, it manages the channels where CAM and DENM messages are sent. 
In the ISMB OBU they can be transmitted on the ETSI G5 radio channel and/or on the cellular way for 
debugging or other purposes. 

SENSORIS module: this module takes the most important data and sends it, via cellular network, to 
the OneM2M platform. The data format is defined by the Autopilot Data Management Team and the 
information is sent using SENSORIS over MQTT. 

Logging module: all the relevant data are internally logged by the OBU following the rules defined by 
D5.2 

Continental provides E-Horizon. E-Horizon means ‘Electronic Horizon’ and relies on the fact that 
what a vehicle can detect is limited in range (e.g. sensors cannot detect a hazard 3km in front of 
itself). By crowd-sourcing data from different vehicles, a dynamic map can be enriched and uploaded 
to vehicles. In the result, vehicles benefit from what the others vehicles detect. 

Practically, in Livorno PS, E-Horizon gathers information from OneM2M IoT platform such as road 
hazards detected by IoT devices, enriches its map, and notifies FCA (Fiat Chrysler Automobiles) cloud 
of these road hazards. FCA Cloud then notifies the vehicle that can adapt its driving speed based on 
this new information. In this case, E-Horizon is both the service provided by Continental Cloud and 
the on-board device. See below for details. 

CONTI E-Horizon Cloud: collects data from TIM oneM2M cloud platform (centralized platform for 
IoT data), processes the data so that they can be consumed. From this data, a dynamic map update 
is generated and sent to FCA cloud using an HTTP request. 

E-Horizon device: this module is in charge to receive the map update notification from FCA cloud 
through a MQTT interface, download the map update content from FCA cloud, process the map 
update and finally convert it to an ADASIS message to be sent over the on-board communication 
CAN bus, so that the information can be shared to others components (such as AD components). 

2.3.3 Verification 

The verification of ISMB in-vehicle IoT platform envisages the following tests: 

¶ IT-ISMB-1: ITS G5: basic test in lab – communication between in-vehicle platform and RSU 

¶ IT-ISMB-2: ITS G5: communication with in-vehicle CAN network 

¶ IT-ISMB-3: ITS G5: communication between in-vehicle platform and RSUs 

¶ IT-ISMB-4: ITS G5: communication between in-vehicle OBUs 
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¶ IT-ISMB-5: ITS G5: communication with traffic light ISMB RSU 

¶ IT-ISMB-6: Cellular connectivity: communication with OneM2M platform 

¶ IT-ISMB-7: 6LoWPAN: connectivity with vibration sensors 

¶ IT-ISMB-8: Connectivity with smartphone/tablet for vibration data 

Tests specifications are reported in the following tables. 

Verification test ID IT-ISMB-1 (M13) 

Test Title ITS G5: basic test in lab – communication between in-vehicle 
platform and RSU 

Link to T2.5  Anticipates ITS-G5 type verification 

High level objective of the test Basic interoperability test between ISMB in-vehicle platform and 
CNIT RSU for CAM and DENM messages. 

Involved software components  CAM/DENM sender/receiver, LDM. 

How the test is realized  One ISMB board and one CNIT RSU are used for CAM/DENM 
exchange in a lab environment (not yet fully integrated in the 
vehicle). 

Pass test criteria  
 

Messages are correctly sent, received and decoded from one 
communication unit to another. 

Results [yes / no] Yes 

 
 
 

Verification test ID IT-ISMB-2 (M15) 

Test Title ITS G5: communication with in-vehicle CAN network 

Link to T2.5  Anticipates ITS-G5 type verification. 

High level objective of the test Communication between CRF autonomous driving platform and 
ISMB in-vehicle platform. 

Involved software components  CANbus interface. 

How the test is realized  The ISMB platform is integrated in the vehicle and exchange 
data with the CRF autonomous board. 

Pass test criteria  
 

Messages are correctly sent, received and decoded from one 
communication unit to another. 

Results [yes / no] Yes 

 
 
 

Verification test ID IT-ISMB-3 (M17) 

Test Title ITS G5: communication between in-vehicle platform and RSUs 

Link to T2.5  Anticipates ITS-G5 type verification 

High level objective of the test Communication test between ISMB in-vehicle platform and CNIT 
RSU for CAM and specific DENM messages. 

Involved software components  CAM/DENM sender/receiver, LDM. 

How the test is realized  One ISMB board and one CNIT RSU are used for CAM/DENM 
exchange in a real environment with specific DENM messages 
related to the use cases. 

Pass test criteria  
 

Messages are correctly sent, received and decoded from one 
communication unit to another. 

Results [yes / no] Yes 
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Verification test ID IT-ISMB-4 (M15) 

Test Title ITS G5: communication between in-vehicle OBUs 

Link to T2.5  Anticipates ITS-G5 type verification. 

High level objective of the test Communication test between ISMB in-vehicle platforms (CAM). 

Involved software components  CAM sender/receiver, LDM. 

How the test is realized  One ISMB board and one CNIT RSU are used for CAM/DENM 
exchange in a real environment with specific DENM messages 
related to the use cases. 

Pass test criteria  
 

Messages are correctly sent, received and decoded from one 
communication unit to another. 

Results [yes / no] Yes 

 

Verification test ID IT-ISMB-5 (M18) 

Test Title ITS G5: communication with traffic light ISMB RSU 

Link to T2.5  Anticipates ITS-G5 type verification. 

High level objective of the test Communication test between ISMB in-vehicle platform and 
ISMB RSU on traffic light for SPAT/MAP and pedestrian 
detection. 

Involved software components  SPAT/MAP DENM sender/receiver, LDM. 

How the test is realized  One ISMB board and one ISMB RSU mounted on a traffic light, 
are used for SPAT/MAP/DENM exchange in a real environment. 

Pass test criteria  
 

Messages are correctly sent, received and decoded from one 
communication unit to another. 

Results [yes / no] Yes 

 

Verification test ID IT-ISMB-6 (M16) 

Test Title Cellular connectivity: communication with OneM2M platform 

Link to T2.5  Anticipates IoT_platform type verification. 

High level objective of the test Communication test between ISMB in-vehicle platform and TIM 
OneM2M platform. 

Involved software components  Network routing. Sensoris module. 

How the test is realized  The in-vehicle platform sends SENSORIS messages to the 
OneM2M platform. 

Pass test criteria  
 
 

Messages are correctly sent and received by the OneM2M 
platform. Messages can be retrieved and correctly decoded by 
the OneM2M platform. 

Results [yes / no] Yes 

 

Verification test ID IT-ISMB-7 (M18) 

Test Title 6LoWPAN: connectivity with vibration sensors 

Link to T2.5  Anticipates IoT_platform type verification. 

High level objective of the test Communication test between ISMB in-vehicle platform and the 
vibration sensor provided by CNIT. 

Involved software components  CoAP/6LoWPAN connector. 

How the test is realized  The in-vehicle platform retrieves messages from the vibration 
sensors via 6LoWPAN. 

Pass test criteria  
 

Messages are correctly received and decoded by the in-vehicle 
platform. 

Results [yes / no] Expected by middle of July 2018. 
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Verification test ID IT-ISMB-8 (M18) 

Test Title Connectivity with smartphone/tablet for vibration data 

Link to T2.5  Anticipates IoT_platform type verification. 

High level objective of the test Communication test between ISMB in-vehicle platform and a 
smartphone/tablet on the car, to retrieve vibration data. 

Involved software components  Other devices connector. 

How the test is realized  The in-vehicle platform retrieves messages from a 
smartphone/tablet. 

Pass test criteria  
 

Messages are correctly received and decoded by the in-vehicle 
platform. 

Results [yes / no] Yes 

2.3.4 Security Considerations 

The implementation of the on board systems described in this chapter should to take into account 
the security requirements Described in D1.9 [3]. The current implementation of the core AD features 
and IoT connections, as of the current document emission date, are not yet fully compliant to the 
security requirements. Nonetheless care has been given to setup a development process that is 
taking into account the need to incorporate the requirements at a later stage. Tracking security 
requirements is an ongoing activity that will produce the full picture of the proposed solution 
compliance, together with security KPIs measurements. It must be clear that Autopilot is not 
developing new cybersecurity solutions, but will just instead use best practices already well 
established by todays secure IT, IoT, and embedded projects. 

The next development stages will consider the implementation of the security requirements based 
on budget constraints and risk. D1.9 provides a reference risk analysis that has been specifically 
performed in order to prioritize security related risks. The components of the architecture described 
in this section of the document are an enabling factor for reducing risk. In particular we have the 
architectural elements to segregate communications and on board networks (CAN, WiFi, G5, etc.). 
One of the most crucial aspects of the current implementation is the lack of message authentication 
and confidentiality. For instance the current G5 implementation has ETSI security features disabled. 
Budget and risk will drive the selection of features to implement at a later stage. 

2.3.5 Data logging and management 

The Italian pilot site in-vehicle IoT platform will use the Google Protocol buffers (PROTOBUF) to 
perform the data logging.  

Protocol buffers are a platform-and-language neutral mechanism for data serialization. They have 
been chosen basically for their performances figure. Compared to XML, PROTOBUF logs are 3 to 10 
times smaller and 20 to 100 times faster, this is to ensure the possibility to log all data at the 
required frequencies (see D4.1 [4]), on a platform based on an ARM processor.  

With PROTOBUF, it is possible to define a data schema (describing how data are structured) and 
automatically generate serializing/deserialzing code starting from it. Supported languages are Java, 
C++, Python, Java Lite, Ruby, JavaScript, Objective-C, and C#.   

Furthermore, PROTOBUF permit to serialize data structure both in binary and JSON. In this way, it is 
possible to set the desired trade-off between compactness and readability of logged data depending 
on the situation (e.g.: logging in human-readable format like JSON during testing phase vs using a 
binary format in normal operations).   

Finally, they permit to define a common data format between different partners only sharing the 
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data schema. This mitigates the problem of incompatibility between different logs files containing 
the same kind of information.  

Considering the logging requirements, the in-vehicle platform can log all the data related to CAM 
and DENM messages and more in general to others V2x packets (e.g. SPAT/MAP). Moreover, all the 
information available on the CAN BUS and coming from the in-vehicle sensors (i.e. pothole detector) 
can be saved. In addition to GNSS PVT (Position, Velocity and Time), if required, the platform can log 
most of the receiver’s raw sentences. Finally, it can log all the data transmitted and received by the 
cellular connection.  

The logged data will be automatically sent to an FTP server (common to all actors of the Italian PS) at 
the end of each test session (e.g. at the end of each day of tests). Before the upload, the data will be 
first translated from the PROTOBUF binary format to a JSON human readable fashion. 
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2.4 Pilot Site The Netherlands 

2.4.1 TNO prototype  

2.4.1.1 Short summary 

The TNO prototype consists of hardware devices (i.e., OEM in-vehicle components, sensors, and AD 
unit) that are integrated to a Unix machine that processes IoT and sensor data. To establish 
connectivity with IoT services (oneM2M platform) and with other vehicles and roadside units 
(ITSG5), two separate communication system units are deployed in the vehicle. Figure 10 shows the 
software architecture scheme defined for the following use cases: 

¶ Platooning: focuses on the integration of IoT platoon service functions into the vehicle to 

provide platooning management and platooning formation signalling. 

¶ Automated Valet Parking (AVP): connects the vehicle to the IoT AVP service which provides 
parking lot availability and allocation as well as information about other road objects in the 
vicinity. 

The in-vehicle IoT platform deployed in the TNO prototype includes components from the following 
partners: NXP (communication system unit) and TomTom (localization service). 

2.4.1.2 Software components  

Figure 10 shows the software components of the in-vehicle IoT platform of the TNO prototype 
vehicle and how they connect to the IoT cloud platform. 

 
 

Figure 10: IoT software components architecture diagram of the TNO prototype vehicle 

As shown in the previous figure, the main components of the in-vehicle IoT platform are: 
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¶ Communication system comprises two communication system units: 
o TNO Unix board: establishes cellular (4G LTE) connectivity to the IoT cloud via 

Websocket requests (JSON/XML) and interfaces with ROS components running in 
the TNO Unix machine. 

o NXP MK5: enables hybrid communication, i.e. combining different communication 
technologies (802.11 ITS-G5 and UWB), which can improve the performance and 
robustness of the communication. The ITSG5 radio is used to broadcast/receive both 
standard (CAM, DENM, SPAT, MAP) and non-standard (platooning management) 
messages whereas the Ultra-Wide Band (UWB) radio is used as redundant channel 
for non-standard messages as well as for measuring the distance to the preceding 
vehicle.   

¶ Run-time environment (ROS) runs on the TNO Unix machine that aggregates and processes 
sensor and IoT data to be used by IoT apps and the AD unit: 

o World model: performs functions such as sensor fusion, target tracking and road 
model computation. It essentially aggregates data coming from multiple sensors, 
V2V communication and the IoT platform to build a road object level description of 
the world to the AD unit. 

o Motion planning: software component that calculates the path that the vehicle will 
take in the next tens of meters based on map (called occupancy map) and dynamic 
obstacles data. This component interfaces with other components in the run-time 
environment (ROS) such as the world model to gather required input such as 
dynamic tracked objects. The component gets the current position and the 
destination from the World model and returns the path that the vehicle shall follow 
given the environment constraints (obstacles). 

o Localization service: TomTom is a partner in the platooning use case for providing an 
HD map service. Using this service the most recent HD map (containing e.g. lane 
markings, lane center-lines, road boundaries) can be streamed to the vehicles. TNO 
also considers the incorporation of this HD map information into the localization 
algorithms of the follower vehicle in the platoon to provide and enhance lane-level 
localization. 

¶ IoT apps generate and/or consume vehicle status and application-specific data (platooning, 
AVP) that are exchanged with the IoT platform (oneM2M).  

¶ Intra-vehicle network comprises all other components outside the in-vehicle IoT platform: 
o Perception sensors: Radars, LIDARs and camera to be used for object and 

environmental perception. 
o AD unit: real-time platform running control-related algorithms. 
o Vehicle sensors: other internal sensors such as IMU, wheel speed, and GPS. 
o OEM specific components: interface with actuators in the vehicle. 

2.4.1.3 Verification 

The verification of the TNO in-vehicle IoT platform envisages the following tests: 

¶ NL-TNO-1: ITS G5/UWB: basic test in lab 

¶ NL-TNO-2: ITS G5/UWB: integration test in-vehicle 

¶ NL-TNO-3: Cellular IoT connectivity - Platooning 

¶ NL-TNO-4: V2V IoT connectivity – Platooning 

¶ NL-TNO-5: V2I IoT connectivity to Traffic Lights (ITS-G5) 

¶ NL-TNO-6: Data Model – Platooning 

¶ NL-TNO-7: Motion planner integration 

¶ NL-TNO-8: Cellular IoT connectivity – AVP 

¶ NL-TNO-9: Data Model – AVP and Platooning           
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Tests specifications are reported in the following tables. 

 

Verification test ID NL-TNO-1 (M14) 

Test Title ITS G5/UWB: basic test in lab 

Link to T2.5  Anticipates ITS-G5 type verification. 

High level objective of the test Basic test with NXP concerning their hybrid communication unit 
(ITSG5 + Ultra-wide band communication channels). 

Involved software components  Communication system. 

How the test is realized  Two NXP communication units are used for basic data exchange 
in a lab environment (not yet fully integrated in the vehicle). 

Pass test criteria  
 

Messages are correctly sent and received from one 
communication unit to another. 

Results [yes / no] Yes 

 
 

Verification test ID NL-TNO-2 (M18) 

Test Title ITS G5/UWB: integration test in vehicle 

Link to T2.5  Anticipates ITS-G5 type verification. 

High level objective of the test Integration test with NXP concerning their hybrid 
communication unit (ITS-G5 + Ultra-wide band communication 
channels). 

Involved software components  OEM specific components, world model, communication system. 

How the test is realized  Messages are defined and generated for the platooning use case 
and travel from OEM components up to the communication 
system which broadcasts to other vehicles with the ITS-G5 
channel. The ultra-wide band (UWB) channel is used for 
exchanging signals and providing ranging information. 

Pass test criteria Messages are correctly sent and received from one vehicle to 
another. Ranging measurement is correctly provided to the 
world model component. 

Results [yes / no] Yes 

 
 

Verification test ID NL-TNO-3 (M14) 

Test Title Cellular IoT connectivity - Platooning 

Link to T2.5 Anticipates IoT_platform type verification. 

High level objective of the test End-to-end information exchange test between vehicle and 
oneM2M IoT platform for the platooning use case. Connectivity 
based on commercial cellular network. 

Involved software components OEM specific components, world model, IoT bridge, vehicle IoT 
apps, communication system, IoT platform (oneM2M) 

How the test is realized  Messages are defined and generated for the platooning use case 
and travel from OEM components up to the IoT platform 
(oneM2M) in the cloud and back to the vehicle. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Yes 
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Verification test ID NL-TNO-4 (M18) 

Test Title V2V IoT connectivity - Platooning 

Link to T2.5 Anticipates ITS-G5 and Vehicle_safety_platooning type 
verification 

High level objective of the test Vehicle-to-vehicle platooning data exchange based on ITS-G5. 

Involved software components  OEM specific components, world model, communication system. 

How the test is realized  Messages are defined and generated for the platooning use case 
and travel from OEM components up to the communication 
system (temporary TNO unit) which broadcasts to other vehicles 
with the ITS-G5 channel. 

Pass test criteria  Messages are correctly sent and received from one vehicle to 
another. 

Results [yes / no] Yes 

 
 

Verification test ID NL-TNO-5 (M18) 

Test Title V2I IoT connectivity to Traffic Lights 

Link to T2.5 Anticipates ITS-G5 type verification. 

High level objective of the test Integration test with traffic light units via IoT.  

Involved software components  OEM specific components, world model, communication system. 

How the test is realized  Messages are generated from traffic light units and sent to IoT 
platform (oneM2M) which re-publishes the data to interested 
vehicles. 

Pass test criteria  Messages are correctly sent from traffic light units and received 
correctly by the vehicle. 

Results [yes / no] Yes 

 
 

Verification test ID NL-TNO-6 (M14) 

Test Title Data Model - Platooning 

Link to T2.5 Anticipates IoT_platform type verification. 

High level objective of the test Verification of preliminary platooning data model (data 
specification of IoT messages to be exchanged). 

Involved software components  IoT bridge, vehicle IoT apps, communication system, IoT 
platform (oneM2M). 

How the test is realized  Messages are defined and generated for the platooning use case 
and travel from OEM components up to the IoT platform 
(oneM2M) in the cloud and back to the vehicle. 

Pass test criteria  Data exchanged (messages) are correctly set as specified in the 
data model and verified via logging outputs. Time 
synchronization of the logging in different components is 
confirmed as required for post-analysis. 

Results [yes / no] Yes 
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Verification test ID NL-TNO-7 (M18) 

Test Title Motion planner integration 

Link to T2.5 Anticipates IoT_platform and Vehicle_safety_platooning type 
verification. 

High level objective of the test Integration test of path/motion planning algorithm. 

Involved software components  World model, vehicle AD planning and control application. 

How the test is realized  Vehicle path planning algorithm from receives and processes 
data from the world model to generate path trajectories to the 
vehicle control system. 

Pass test criteria  Path trajectories are generated based on world model data. 

Results [yes / no] Yes 

 
 

Verification test ID NL-TNO-8 (M18) 

Test Title Cellular IoT connectivity - AVP 

Link to T2.5 Anticipates IoT_platform type verification. 

High level objective of the test End-to-end information exchange test between vehicle and 
oneM2M IoT platform for the AVP use case. Connectivity based 
on commercial cellular network. 

Involved software components  OEM specific components, world model, IoT bridge, vehicle IoT 
apps, communication system, IoT platform (oneM2M). 

How the test is realized  Messages are defined and generated for the AVP use case and 
travel from OEM components up to the IoT platform (oneM2M) 
in the cloud and back to the vehicle. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Yes 

 
 

Verification test ID NL-TNO-9 (M18) 

Test Title Data Model – AVP and Platooning 

High level objective of the test Verification test of final data models for both platooning and 
AVP use cases. 

Involved software components  IoT bridge, vehicle IoT apps, communication system, IoT 
platform (oneM2M). 

How the test is realized  Messages are defined and generated for both platooning and 
AVP use cases and travel from OEM components up to the IoT 
platform (oneM2M) in the cloud and back to the vehicle. 

Pass test criteria  Data exchanged (messages) are correctly set as specified in the 
data model. 

Results [yes / no] Yes 

2.4.1.4 Data logging and management 

All data is recorded with available ROS tooling for logging. This log data is stored in ROS bag files, 
which are the standard file format for logging in the ROS environment. 

Every data message that goes to and from the IoT platform is extracted from the ROS bag files and 
based on it a new CSV file is generated to meet all data logging requirements as defined in WP4.1. 

The generated CSV file is then uploaded to a FTP server directory that has been allocated for each 
use case in the project for evaluation. 
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2.4.2 NEVS prototype  

2.4.2.1 Short summary 

The NEVS prototype is an electric vehicle (EV) platform based on a passenger car (D-class) chassis. 
The vehicle provides control interfaces to the steering, propulsion and brake mechanisms to allow 
realization of various AD functionalities. The specific use-cases within the project scope are AVP and 
Platooning. The control interfaces are accessible through a prototyping environment (i.e. dSpace 
MABX). This can provide access to interior sensor readings regarding vehicle dynamic states, e.g. 
rotational or translational acceleration, steering angle, brake pressure, wheel speed, etc.  
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2.4.2.2 Software components  

Figure 11 shows the software components of Vehicle control system of the NEVS prototype vehicle 
and the integration to the In-Vehicle IOT platform and above layers. 

 

 

Figure 11: NEVS vehicle control system 

CAN Interface layer: This layer is responsible for sending and receiving CAN messages to and from 
external systems. This layer interfaces with the in-vehicle IoT platform and the rest of the vehicle. 

Vehicle controller: This module is responsible for executing the actuation in the vehicle and 
interfaces with the rest of the control units in the vehicle. This also interfaces with the HMI for 
communicating with the driver. 

Sensors: This unit comprises a radar, camera and GPS components. This sends the object 
information to the in-vehicle IoT platform. 

2.4.2.3 Verification 

The verification of TNO in-vehicle IoT platform envisages the following tests: 

Autopilot Applications

Automatic Valet Parking Platooning

In Vehicle IoT Platform

IOT Platform

IOT Apps

Communication System

V2X ITS G5 Cellular 4G

World Model Motion planning Localization

Other vehicles/ 
roadside units

NEVS Vehicle Control System

Actuators HMI

CAN Interface layer

Vehicle Controller

Radar

Camera

GPS
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¶ NL-NEVS-1: Integration test for CAN interfaces 

¶ NL-NEVS-2: Integration test for ADAS unit 

Tests specifications are reported in the following tables. 

Verification test ID NL-NEVS-1 

Test Title Integration test for CAN interfaces 

High level objective of the test Test of CAN communication between In-vehicle IoT and Vehicle 
control system. 

Involved software components  
 

CAN Interface layer. 

How the test is realized  Using CAN tools. 

Pass test criteria  Messages are correctly sent and received . 

Results [yes / no] Planned; basic IoT integration test is done by chapter 2.4.1.3. 

 
 

Verification test ID NL-NEVS-2 

Test Title Integration test for ADAS unit 

High level objective of the test Test of communication between In-vehicle IoT and ADAS unit. 

Involved software components  
 

ADAS unit. 

How the test is realized  Using CAN tools. 

Pass test criteria The objects with relevant information and position data are 
received. 

Results [yes / no] Planned; basic IoT integration test is done by chapter 2.4.1.3 

2.4.2.4 Data logging and management 

The Vehicle controller shown in Figure 11 is connected to the vehicle network and has access to the 
vehicle information. The necessary vehicle information is packaged in the CAN interface layer and 
sent over CAN to in-vehicle IoT platform. 

2.4.3 TUEIN prototype  

The TUEIN prototype vehicle and in-vehicle IoT platform, whose software components are shown in 
Figure 16, provide the needed support for the TU/e use case Urban driving / Rebalancing, to pilot a 
driverless car rebalancing service on the Eindhoven University campus. The University Campus has a 
2-km road network and a 30 km/h speed limit. On the campus, there are neither cross walks nor 
traffic lights. 

The main goal of the rebalancing use case is to demonstrate a set of vehicles driving autonomously 
within the constraints of TU/e Campus (Urban environment) using both environmental sensor data 
as well as data available through IoT platform to improve the world model & Local Dynamic Maps 
embedded in the vehicle. 

The technical setup is of the in-vehicle IoT platform is based on the connectivity requirements with 
the different separate IoT platform in the Urban Driving / Rebalancing use case represented in Figure 
12. 
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Figure 12: Overall IoT connectivity architecture to which the TUe vehicle needs to connect 

2.4.3.1 Short summary 

The TU/Eindhoven Campus Test Site provides 1 vehicle (Toyota Prius) for AUTOPILOT: Technolution 
contribute with 3 ITS-G5 devices (1 in-vehicle / 2 on people) and has integrated the ITS-G5 device 
into the in-vehicle IoT platform, such that using G5 Vehicles, Vulnerable Road Users and Road Side 
Units can contribute to the Rebalancing use case. 

Contents of CAM messages from the vehicle are provided through OneM2M via MQTT using cellular 
3/4G. 

 

Figure 13: Solution IoT gateway with In-Vehicle IoT platform 
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Figure 14: Technolution IoT gateway (4G) with Technolution FlowRadar (ITS-G5) (both labelled with AUTOPILOT) 

Concerning the VRU IoT solution, the G5 broadcast of CAM messages (specifically identified as VRU) 
is used to localize those VRU’s using position, speed and heading. Every vehicle on-board IoT 
gateway (Host vehicle communication system) will receive these VRU G5 CAM messages and 
broadcasts those VRU G5 CAM messages, using cellular communication (3/4G), towards the 
Brainport OneM2M IoT platform. 

Concerning the in-vehicle IoT Platform, the prototype uses an on-board unit to implement the in-
vehicle IoT Platform, which will communicate with the different sensors (IoT devices) that reside 
inside the vehicle and with the external IoT platforms, including the Brainport pilot site OneM2M 
platform, FIWARE, HUAWEI OceanConnect & IBM Watson, as depicted in Figure 12. 

Detailed description of Technolution IoT gateway: 

¶ Communication interfaces: These interfaces are provided by the Technolution OBU (on-
board unit) where the in-vehicle IoT platform is implemented. 

 

Figure 15: Communication interfaces of Gateway layer 

- In car internal connectivity of the gateway layer 
o UDP to connect to the TU/e in-vehicle Runtime environment 

- In car external connectivity of the gateway layer 
o 3G/4G LTE to connect to the central IoT platform for receiving smartphone data 

- Gateway protocols 
o G5 gateway protocols:  sub-set of CAM messages according to the ETSI 

standards 
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o 4G/5G gateway protocols: OneM2M standards + connectivity with HUAWEI 
Ocean Connect IoT platform  

¶ IoT Module:  
- Gateway additional functions 

o GPS (gps time used for time synchronization of G5 messages) 
o Log files/local storage: for evaluation proposed 
o Security: non-functional requirement 

- ETSI standards 
o For the interaction of Autonomous driving with the roadside, specific for 
“Vehicle to road side communication” it is needed that the V2I communication is 
standardized in an European format (ETSI). Information to and from the vehicle 
can be addressed through CAM messages, adapted to VRU identification in this 
use case. 

- Connection with OneM2M MQTT 
o MQTT broker: the gateway will also be positioned as a MQTT broker for the 

vehicle information. The vehicle than has its own information broker on board 
to share information between devices and applications with publish-subscribe 
mechanism. 

o MQTT connector: the MQTT connector supports both publishing (Send) and 
subscribing (Listen) to an MQTT broker (or server). This connector enables to 
integrate data to and from MQTT broker, which manages data from devices and 
sensors, with data from other sources accessible (connected with the 
functionality of IoT device adaptation and OEM communication systems).  

2.4.3.2 Software components 

The figure below shows an overview of the software components of the in-vehicle IoT platform of 
the TU/e Brainport pilot site and how these are connected, as well as how they connect with the IoT 
cloud platform. 
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Figure 16: Vehicle scheme TUEIN prototype of software components, with In-Vehicle IoT platform 

As shown in the previous figure, the main modules that compose the in-vehicle IoT platform are: 

¶ Communication system comprises two communication system units: 
- The communication system provided by Technolution combines both ITS-G5 as well 

as 4G communication to the OneM2M platform and HUAWEI OceanConnect 
platform. 

o Technolution Gateway: establishes cellular (4G LTE) connectivity directly to 
the OneM2M & HUAWEI OceanConnect platforms and interfaces with ROS 
components running in the TU/e Unix machine. 

o Technolution FlowRadar: establishes ETSI ITS G5 to connect the vehicle to 
VRU (only 2 VRU will be equipped with ITS-G5 devices for this) 

- Separately, there is a direct connection from the NEC CEMA crowd estimation device 
in the vehicle towards the NEC FIWARE platform. 

¶ NEC Crowd Detector is a separate hardware device that is in the vehicle and directly sends 
the number of detected devices within range of the device to the CEMA service from NEC. 
Data from the CEMA service is then received back into another vehicle using the schematic 
above. 

¶ Run-time environment (ROS) runs on the TU/e Unix machine that aggregates and processes 
sensor and IoT data to be used by IoT apps and the AD unit: 

o World model: performs functions such as sensor fusion. It essentially aggregates 
data coming from multiple sensors, V2V communication and the IoT platform to give 
an overview of the obstacles around the vehicle to the AD unit. 
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o Motion planning (provided by NEC): software component that calculates the path 
that the vehicle will take in the next tens of meters based on obstacle data. 

o Localisation: using RTK-GPS combined with vision based localization algorithms to 
localize the ego vehicle. 

o NXP / TU/e Lane centering module: a low latency automated lane-centering system 
is developed and deployed on basis of open platform technology. This is 
implemented on a separate hardware platform. A fully programmable open vision 
pipeline allows OEMs to customize and optimize the vision processing. To that end a 
low power, small form-factor, automotive vision processor that embodies open 
standards (Open CL and Open CV) with a completely programmable vision pipeline is 
incorporated with various dedicated cores to achieve high performance, low power, 
and standards adherence. It also supports a high bandwidth MIPI (CSI-2) interface; a 
widely used camera interface in the IoT (mobile, wearables) industry. The sensor 
also considerably reduces bandwidth requirements, thus enabling real-time analytics 
in the IOT world. The algorithm employs principles of IoT based deep-learning in a 
more traditional model-based algorithm. The algorithm exploits the concept of 
hierarchical classification from deep learning. However, unlike deep learning, 
classification at each hierarchical level is engineered instead of being trained 
through images. This makes it more predictable as well as verifiable. The algorithm 
runs significantly faster than current lane-recognition systems, allowing significantly 
smoother automated driving. In addition, the performance of inference of neural 
networks on the vision processor is evaluated. Although in general it may be thought 
that large scale floating point GPU’s are needed for inference, (as appears from the 
large deployment of NVIDA PX2 in automotive), results show that excellent results 
can be obtained on the relatively resource constraint IoT vision processor by 
deploying fixed point-neural networks. To that end, a newly developed lateral 
control algorithm to perform automated lateral control is deployed 

¶ Intra-vehicle network comprises all other components outside the in-vehicle IoT platform: 
o Perception sensors: Radars, LIDAR and camera to be used for object and 

environmental perception 
o AD unit: real-time platform running control-related algorithms 
o Vehicle sensors: other internal sensors such as IMU, wheel speed, and GPS 
o OEM specific components: interface with actuators in the vehicle 

2.4.3.3 Data logging and management 

TU/e uses the same data management approach as TNO (see 2.4.1.4).  

Next to this, also data from and to the OneM2M platform is recorded in the Technolution IoT 
gateway described above. 

2.4.3.4 Verification 

The verification of TUEIN in-vehicle IoT platform comprises the following tests: 

¶ NL-TUE-1: ITS G5/IoT integration: basic test in lab 

¶ NL-TUE-2: Cellular IoT connectivity OneM2M – Urban Driving / Rebalancing 

¶ NL-TUE-3: Cellular IoT connectivity HUAWEI OceanConnect – Urban Driving / Rebalancing 

¶ NL-TUE-4: Cellular IoT connectivity NEC FIWARE – Urban Driving / Rebalancing 

¶ NL-TUE-5: Data Model – Urban Driving / Rebalancing 
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Verification test ID NL-TUE-1 (M14) 

Test Title ITS G5/IoT integration: basic test in lab 

High level objective of the test Basic test with Technolution concerning their in-vehicle IoT 
platform with ITS-G5 functionality. 

Involved software components  Communication system, Technolution FlowRadar (ITS-G5 unit). 

How the test is realized  Two ITS G5 FlowRadar communication units are used for basic 
data bridging to the 3G/4G network in a lab environment (not 
yet fully integrated in the vehicle). 

Pass test criteria  
 
 

The ETSI CAM Messages are correctly bridged from the G5 
network to the IOT 3G/4G network and sent and received from 
one 3G/4G communication unit to another 3G/4G 
communication unit. 

Results [yes / no] Yes (only first set of positioning messages) 

 

Verification test ID NL-TUE-2  (M18) 

Test Title Cellular IoT connectivity OneM2M – Urban Driving / Rebalancing 

Link to T2.5 Anticipates verification of 2-way communication (over 4G 
connection) to OneM2M. 

High level objective of the test End-to-end information exchange test between vehicle and 
oneM2M IoT platform for the Urban Driving use case. 
Connectivity based on commercial cellular network. 

Involved software components OEM specific components, world model, Technolution IoT 
Gateway, vehicle IoT apps, communication system, IoT platform 
(oneM2M). 

How the test is realized  Messages are defined and generated for the Urban Driving use 
case and travel from OEM components up to the IoT platform 
(oneM2M) in the cloud and back to the vehicle. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Yes (tested in Plugfest #2, May 2018) 

 

Verification test ID NL-TUE-3  (M18) 

Test Title Cellular IoT connectivity HUAWEI OceanConnect – Urban Driving 
/ Rebalancing. 

Link to T2.5 Anticipates verification of 2-way communication (over 4G 
connection) to HUAWEI OceanConnect. 

High level objective of the test End-to-end information exchange test between vehicle 
communication system (Technolution IoT gateway) and 
proprietary IoT platforms from HUAWEI. Connectivity based on 
commercial cellular network. 

Involved software components OEM specific components, Technolution IoT Gateway, vehicle 
IoT apps, communication system, IoT platform (HUAWEI 
OceanConnect). 

How the test is realized  Messages are defined and generated for the Urban Driving use 
case and travel from OEM components up to the IoT platform 
(OceanConnect) in the cloud. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Yes  
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Verification test ID NL-TUE-4  (M18) 

Test Title Cellular IoT connectivity NEC FIWARE – Urban Driving / 
Rebalancing 

Link to T2.5 Anticipates verification of 1-way communication (over 4G 
connection) from NEC CEMA device to NEC FIWARE and 1-way 
communication towards vehicle platform of CEMA data. 

High level objective of the test End-to-end information exchange test between NEC CEMA 
crowd estimation device in the vehicle and proprietary NEC 
FIWARE IoT platform. Connectivity based on commercial cellular 
network. 

Involved software components NEC CEMA device in-vehicle, NEC FIWARE IoT platform, 
Technolution IoT Gateway, communication system. 

How the test is realized  Messages are defined and generated for the Urban Driving use 
case and travel from NEC CEMA device up to the IoT platform 
NEC FIWARE platform. 

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Yes 

 

Verification test ID NL-TUE-5   (M18) 

Test Title Data Model – Urban Driving / Rebalancing 

Link to T2.5 Anticipates verification of Urban Driving / VRU detection 
applications. 

High level objective of the test Verification of preliminary VRU detection data model (data 
specification of IoT messages to be exchanged). 

Involved software components  Technolution IoT Gateway, vehicle IoT apps, communication 
system, IoT platform (oneM2M). 

How the test is realized  Messages are defined and generated for the use case and travel 
from OEM components up to the IoT platform (oneM2M) in the 
cloud and back to the vehicle. 

Pass test criteria  Data exchanged (messages) are correctly set as specified in the 
data model and verified via logging outputs. Time 
synchronization of the logging in different components is 
confirmed as required for post-analysis. 

Results [yes / no] Yes 

2.4.4 VALEO prototype  

2.4.4.1 Short summary 

The Valeo prototype consists of hardware devices (i.e., OEM in-vehicle components, Valeo sensors, 
and AD unit) that are integrated to a Windows machine that processes IoT and sensor data. To 
establish connectivity with IoT services (oneM2M platform) and with other vehicles and roadside 
units (ITS-G5), we use our own Valeo shark antenna. The following Figure 10 shows the software 
architecture scheme defined for the following use case: 

¶ Highway Pilot (HP): focuses on the integration of IoT in a vehicle and with road cameras to 

detect road defects and set AD instructions for the following vehicles. 

The in-vehicle IoT platform deployed in the Valeo prototype includes components from the following 
partners: Vicomtech (Road anomaly detection) and TomTom (Live maps and AD instructions). 
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2.4.4.2 Software components  

 

Figure 17: Software components of the in-vehicle IoT platform of the Valeo prototype vehicle 

This figure shows the software components of the in-vehicle IoT platform of the Valeo prototype 
vehicle and how they connect to the IoT cloud platform. 

¶ Communication system comprises two type of communication thanks to: 
o VALEO shark antenna: establishes cellular (4G LTE) connectivity to the Valeo cloud 

via MQTT Publish Anomaly (JSON) and interfaces with RTMaps components running 
in the Valeo Windows machine. Combining different communication technologies 
(802.11 ITS-G5), it can improve the performance and robustness of the 
communication. The ITSG5 radio is used to broadcast/receive both standards (CAM, 
DENM). 

¶ Run-time environment (RTMaps) runs on the Valeo Windows machine that aggregates and 
processes sensor and IoT data to be used by IoT apps and the AD unit: 

o Valeo behavior anomaly detector: This is an algorithm based on the vehicle 
behaviour to detect abnormal driving. 

o Valeo motion anomaly detector: This is an algorithm based on the vehicle 3D 
motions to detect abnormal road. 

o VicomTech anomaly detector: This is an algorithm based on the front camera and 
the lidar to detect road defects.  

o Recorder & Batcher: This is a raw recorder of all data to replay the set of data and to 
do machine learning as post-processing in the Cloud. 

o Logger: This block is the watcher of the IoT platform which will notify every single 
event in the in-vehicle IoT platform. 

o HMI: This HMI will let testers understand the known and incoming road defects and 
associated AD instructions. 

o Localization service: GPS signals and HD map based localization service output might 
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be fused to achieve an enhanced lane-level vehicle positioning. 

¶ Intra-vehicle network comprises all other components outside the in-vehicle IoT platform: 
o Perception sensors: Radars, LIDARs and camera to be used for object and 

environmental perception. 
o AD unit: real-time platform running control-related algorithms. 
o Vehicle sensors: other internal sensors such as IMU, wheel speed, and GPS. 
o OEM specific components: interface with actuators in the vehicle. 

¶ TomTom Horizon server/client is an available solution provided by TomTom to securely 
implement AD instruction associated to road hazards met. The server contains a specific 
layer of road hazards and another for AD instructions. 

¶ TASS Control Center is the only human in the loop. Its task is associated AD instructions to 
each road hazard. 

2.4.4.3 Verification 

The verification of VALEO in-vehicle IoT platform envisages the following tests: 

¶ NL-VCDA-1: Detection of road anomaly 

¶ NL-VCDA-2: Data logging 

¶ NL-VCDA-3: Recording data 

¶ NL-VCDA-4: Cloud connectivity 

¶ NL-VCDA-5: ADASIN reception 

¶ NL-VCDA-6: Road hazard representation (HMI)  

¶ NL-VCDA-7: ADASIN application 

¶ NL-VCDA-8: Data model 

Tests specifications are reported in the following tables. 

Verification test ID NL-VCDA-1 (M14) 

Test title Detection of road anomaly 

High level objective of the test Through car sensors, these algorithms: driving behaviour, 
motion anomaly and road viewing anomaly have to generate a 
JSON::Anomaly. 

Involved software components  Algorithms of detection and sensors. 

How the test is realized  Go through a road hazard several times and each algorithm has 
to generate a JSON::Anomaly. 

Pass test criteria  At least, a JSON::Anomaly is sent to the cloud every time. 

Results [yes / no]  

 
 

Verification test ID NL-VCDA-2 (M14) 

Test title Data logging 

High level objective of the test Each event in, through and out the vehicle has to be archived as 
described in D4.1.  

Involved software components  Logger and communication system. 

How the test is realized  Generate each event and confirm that the logger react to the 
change. 

Pass test criteria  For each event in the vehicle, a logging has been done. 

Results [yes / no]  
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Verification test ID NL-VCDA-3 (M14) 

Test title Recording data 

High level objective of the test Keep a trace of what has been done with the vehicle. 

Involved software components  Recorder, sensors and logger. 

How the test is realized  Before launching a record, verify that every sensor is sending 
data, every algorithm is ready to detect anomalies and the 
communication system is operational. 

Pass test criteria  Be able to replay a record as we are doing it. 

Results [yes / no]  

 
 
 

Verification test ID NL-VCDA-4 (M14) 

Test title Cloud connectivity 

High level objective of the test Keep the Cloud connectivity on and received the ADASIN at the 
right time. 

Involved software components  Communication system, AD unit and TomTom Horizon client. 

How the test is realized  Send regularly messages from the vehicle to the Cloud and vice-
versa for a long period (more than 20 minutes). 

Pass test criteria  90% of received messages from both sides. 

Results [yes / no]  

 
 
 

Verification test ID NL-VCDA-5 (M14) 

Test title ADASIN reception 

High level objective of the test Define the relevance and the potential application of the ADAS 
instruction in a giving driving situation. 

Involved software components  AD unit, communication system, HMI and sensors. 

How the test is realized  Apply suitable ADASIN and unsuitable ADASIN and display the 
status on the HMI. 

Pass test criteria  The AD unit is able to apply on its own the ADASIN. 

Results [yes / no]  

 
 
 

Verification test ID NL-VCDA-6 (M14) 

Test title Road hazard representation (HMI) 

High level objective of the test Show the enhancement of the IoT through the display of 
incoming road hazards and incoming ADASIN. 

Involved software components  HMI, AD unit and communication system. 

How the test is realized  Go next to an annotated road hazard and ADASIN and display 
them on the HMI of the vehicle. 

Pass test criteria  Display them correctly and have enough time to read the 
information. 

Results [yes / no]  
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Verification test ID NL-VCDA-7 (M14) 

Test title ADASIN application 

High level objective of the test When the ADASIN is suitable (see NL-VCDA-5), the vehicle 
respects the ADASIN until this end. 

Involved software components  AD unit, communication system, HMI and sensors. 

How the test is realized  Apply and display the time/distance from when it will be apply 
until when (countdown). 

Pass test criteria  Apply the ADASIN before the road hazard and remove the 
ADASIN after the road hazard. 

Results [yes / no]  

 
 

Verification test ID NL-VCDA-8 (M14) 

Test title  Data Models 

High level objective of the test Verification of all data model (Anomaly, Hazard and ADASIN). 

Involved software components  Algorithms of detection, sensors, logger and communication. 

How the test is realized  Messages are defined and generated for from the vehicle to 
the IoT platform (oneM2M) in the cloud and back to the 
vehicle. 

Pass test criteria  Data exchanged are correctly set as specified in the data 
model and verified via logging outputs. Time synchronization 
of the logging in different components is confirmed as 
required for post-analysis. 

Results [yes / no]  

2.4.4.4 Data logging and management 

Each functional block from Figure 17 has his own data logging. The transfer of these logs from a 
component to other respects the connections on this diagram. 

Each log file is in “csv” file type. They shall contain the header of each column. Unix epoch 
timestamps are long value with the number of milliseconds since 1-1-1970 UTC (Ex 
:1521453406869). The log_data field must be bracketed in quotes: " ". 

The log data fields and their occurrences are listed the following tables: 

Responsible 
Vicomtech 
Valeo 
 

CSV Log File Name 

log.tiguan_vicomtech_component.csv  

log.tiguan_data_manager.csv  

log.tiguan_imu_component.csv  

log.tiguan_secure_agent.csv  

log.tiguan_ad_command.csv  
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Log Data Field Occurrences 

Log_timestamp <unix epoch in ms>  

log_stationid TIGUAN 

log_applicationid 
VICOMTECHCOMPONENT 
DATAMANAGER 
IMUCOMPONENT 

log_action 

SEND 
NOTIFICATION 
ALIVE 
RECEIVE 
AUTHENTIFICATION 
CONNECTION 
PROCESSING 

log_medium 
INTERNAL 
4G 

log_type 

DATA 
ERROR 
INFO 
NONE 

log_data 

JSON::Anomaly 
JSON::Hazard 
JSON::ADASIN 
Map::Hazard 
Map::ADASIN 
<error message> 
<message> 
NONE 

All these logs are locally stored in the test vehicle. They have to be sent manually (TBC) to the TNO 
logging platform after each performed test. 

2.4.5 IBM Ireland prototype 

2.4.5.1 Short summary 

IBM IE is leading the car-sharing/ ridesharing use case in Brainport. This use case will provide a 
cloud-based application to book and dispatch vehicles to accommodate ride demands. In addition, 
the service will be coupled with other use cases in the Brainport area, i.e., platooning, car 
rebalancing, AVP.  

IBM IE does not have access to vehicles per se, but it will make use of partners’ vehicles to integrate 
its solution. In particular, the vehicles will be equipped with GPS/radio receivers, so to communicate 
with the ridesharing application on the cloud.  

We are developing a Watson IoT API call, which vehicles will be able to use to publish/subscribe to 
events and receive updates. For example, vehicles will be able to post if a road is blocked (jammed), 
as well as other communication protocols to communicate directly with the ridesharing/carsharing 
service.  

The In-Vehicle IoT platform will be also coupled with the ones of other use cases, so to acquire 
events that may be useful for the IBM IE service. 

2.4.5.2 Software components 

A general picture is shown in Figure 18. One can see how the vehicles will be equipped with an on 
board unit that can send/receive information to the ridesharing application directly, and that can 
make use of a Watson IoT API call to publish and subscribe to events.  
 



 
 

53 

The on board unit consists of:  

(i) A GPS receiver with navigation capabilities; this will serve to guide the vehicles to pick-
up and delivery locations; 

(ii) A Data log/ process component; this will serve to log the available data and process the 
received/ to be sent information. For example, the log will store the customers that the 
vehicle has serviced, and the vehicle status. If the fuel is running low, the data 
processing will inform the ridesharing/car-sharing application; 

(iii) A radio communication module, so to receive and send data (either via the API directly, 
possibly via OneM2M, or via MQTT directly to the application). 

As for Hardware, the on board unit will be a suitably modified tablet, or smart phone, capable of 
displaying routing information and directions to the user.  

As for Software, the on board unit will have a navigation software for the GPS in (i), some simple 
data logging and processing for (ii), and simple APIs/ OneM2M connectors for (iii).  

 

Figure 18: Vehicle scheme of software components, with In-Vehicle IoT platform 

2.4.5.3 Verification 

The verification of IBM IE in-vehicle IoT platform encompasses these tests, which are specified in the 
tables that follow. 

¶ NL-IBMIE-1: On board unit: basic tests in the lab 

¶ NL-IBMIE-2: On board unit: basic tests in the vehicle 

¶ NL-IBMIE-3: Connectors: basic tests in the lab 

¶ NL-IBMIE-4: End-to-end connectivity and data transmission 

¶ NL-IBMIE-5: In-car data managing: data models, logging, displaying 

Verification test ID NL-IBMIE-1 (M17) 

High level objective of the test On board unit: basic tests in the lab 

Link to T2.5  Anticipates IoT_platform type verification. 

Involved software components  On board unit software. 

How the test is realized  Messages are defined and sent to the on board unit that has to 
display the information and send back messages. 

Pass test criteria  Messages are correctly sent and received from one end to 
another. Navigation is correctly displayed. 

Results [yes / no] Planned 
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Verification test ID NL-IBMIE-2 (M17) 

High level objective of the test On board unit: basic tests in the vehicle 

Link to T2.5  Anticipates IoT_platform type verification. 

Involved software components  On board unit software. 

How the test is realized  Messages are defined and sent to the on board unit that has to 
display the information and send back messages. The vehicle 
purposely does not follow the GPS directions: GPS navigator 
changes the directions in real-time. 

Pass test criteria  Messages are correctly sent and received from one end to 
another. Navigation is correctly displayed. 

Results [yes / no] Planned 

 

Verification test ID NL-IBMIE-3 (M17) 

High level objective of the test Connectors: basic tests in the lab 

Link to T2.5  Anticipates IoT_platform type verification. 

Involved software components  IBM Watson API, IBM adapter, and MQTT. 

How the test is realized  Messages are defined and sent back and forth from the on 
board unit to the cloud via IBM Watson API, IBM adapter, and 
MQTT. 

Pass test criteria  Messages are correctly sent and received from one end to 
another. 

Results [yes / no] Planned 

 

Verification test ID NL-IBMIE-4 (M18) 

High level objective of the test End-to-end connectivity and data transmission 

Link to T2.5  Anticipates IoT_platform type verification. 

Involved software components  IBM Watson API, IBM adapter, and MQTT, on board software 

How the test is realized  Messages are defined and generated for the vehicles and travel 
to Watson IoT and back. The vehicle is purposely driving not 
following the GPS directions: data logs are sent to the cloud and 
new directions are issued.  

Pass test criteria  Messages are correctly sent and received from one end to 
another (first and last components). 

Results [yes / no] Planned 

 

Verification test ID NL-IBMIE-5 (M18) 

Test Title In-car data managing: data models, logging, displaying 

Link to T2.5  Anticipates IoT_platform type verification. 

High level objective of the test Verification of the in-car data management functionalities. 

Involved software components  IBM Watson API, IBM adapter, and MQTT, on board software. 

How the test is realized  Messages are defined and generated for the car-sharing use 
case and travel from on board unit up to the IoT platform in the 
cloud and back to the vehicle. 

Pass test criteria  Data exchanged (messages) are correctly set as specified in the 
data model and verified via logging outputs. Time 
synchronization of the logging in different components is 
confirmed as required for post-analysis. 
Navigation is correctly displayed in the vehicle and changes are 
reported in real-time, if the vehicle does not follow directions.  

Results [yes / no] Planned 
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2.4.5.4 Data logging and management 

The data that are needed for the car sharing service are sent to the service and are available for 
evaluation. Data will be logged at the service side and stored in different formats depending on the 
nature of the data (typically routes, ride-assignments, GPS positions, etc.). The collected data will be 
available for evaluation for work package 4. 

2.4.6 DLR prototype 

2.4.6.1 Short summary 

The DLR prototype FASCarE is a fully electric Volkswagen e-Golf. The vehicle was modified to allow 
access to the OEM systems, particularly OEM sensors and actuators for longitudinal and lateral 
control. Furthermore, it was equipped with additional hardware. This includes radar and laser 
sensors, a differential GPS system, several industrial PCs for running the AD functionality, a 4G 
communication unit and a custom dashboard display. Figure 19 shows the software scheme for the 
following use case: 

- Automated Valet Parking (AVP): connects the vehicle to the IoT AVP service which 
provides parking lot availability and allocation, routing as well as information about 
other road objects / obstacles in the vicinity. 

2.4.6.2 Software components 

The main components of the vehicle software architecture are: 

¶ Communication system 

o Mobile communication unit (4G): provides Internet connectivity to the IoT platform 

o IoT Gateway: communicates with the IoT platform over MQTT 

o Logging: logs IoT communication 

¶ Run-time environment ROS runs a Ubuntu Linux machine and is responsible for processing 

and fusing sensor and IoT data to be used by the AD functions: 

o World model: performs functions such as sensor fusion, target tracking and road 

model computation. It essentially aggregates data coming from multiple vehicle 

sensors and the IoT platform to build an environment model of the world.  

o Data Logging: logs data from sensors  

¶ Run-time environment Dominion runs on a Ubuntu Linux machine and responsible for  

o AVP Function Management: controls and monitors the general flow of the AVP use 

case, e.g. dropoff – park – pickup and is responsible for activating the relevant 

function modules based on the data received through the IoT gateway 

o Tactical Planner: plans the vehicle’s behaviour on a tactical level with a time horizon 

of several seconds and parametrizes trajectory planning accordingly, based on e.g. 

recommended speed and static obstacles 

o Trajectory planning: software component that computes a path for the vehicle with 

certain constraints such as obstacle avoidance 

o High Level Control: is responsible for keeping the vehicle on the path by sending 

actuator setpoints to the vehicle systems  

o Logging: logs data specific to functionality running on Dominion RTE 

¶ ROS-Dominion-Bridge 
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o Is responsible for relaying data between both run time environments 

¶ Intra-vehicle network comprises all other components outside the in-vehicle IoT platform: 

o Perception sensors: Radars, LIDARs and camera to be used for object and 

environmental perception 

o RTK GPS: GPS localization system with real-time kinematic positioning (RTK) 

o Vehicle specific components: real-time platform for low level actuator control and 

vehicle OEM sensors (odometry, RADAR, camera) 

o In-vehicle HMI: Custom dashboard display 

 

Figure 19: DLR vehicle scheme for software components 

2.4.6.3 Verification 

Verification of the vehicle platform is done using the following tests: 

Verification test ID NL-DLR-1 (M18) 

Test Title Integration ROS – Dominion Bridge 

High level objective of the test Test data transfer between ROS and Dominion RTEs. 

Link to T2.5 None 

Involved software components  ROS and Dominion RTE. 

How the test is realized  ROS and Dominion applications are started as well as the ROS 
Dominion Bridge. The bridge is configured to relay specific data 
from ROS to Dominion and vice versa.  

Pass test criteria  
 
 

The test is successfully if data available in Dominion can be 
accessed from a ROS application and data published in ROS can 
be read from a Dominion application. 

Results [yes / no] Yes 
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Verification test ID NL-DLR-2 (M18) 

Test Title IoT connectivity 

High level objective of the test Test data transfer between vehicle platform and IoT platform. 

Link to T2.5 Being tested as part of T2.5. 

Involved software components  Communication system, IoT platform, AVP IoT application. 

How the test is realized  See test cases IoT_platform_1-7 from T2.5. 

Pass test criteria  IoT data can be sent / received and parsed correctly. 

Results [yes / no] Yes 

 
 

Verification test ID NL-DLR-3 (M18) 

Test Title LIDAR ROS Integration 

High level objective of the test Receive LIDAR data over ROS. 

Link to T2.5 None 

Involved software components  LIDAR, ROS 

How the test is realized  Enable LIDAR, read and process LIDAR data in a ROS application. 

Pass test criteria  LIDAR data arrives reliably and processing output appears valid. 

Results [yes / no] Yes 

 
 

Verification test ID NL-DLR-4 (M18) 

Test Title GPS ROS Integration 

High level objective of the test Receive GPS data over ROS. 

Link to T2.5 None 

Involved software components  GPS RTK, ROS 

How the test is realized  Enable GPS, read and process GPS data in a ROS application. 

Pass test criteria  GPS data arrives reliably and appears valid. 

Results [yes / no] Yes 

2.4.6.4 Data logging and management 

There are three logging components involved 

- Logging in ROS 
o Data exchanged in ROS is logged in ROS bag files, the standard format for logging in 

ROS 
- Logging in Dominion 

o Use Case / evaluation relevant data exchanged in Dominion is logged in csv files 
- Communication Logging 

o Every message sent / received from the IoT platform is logged in csv files according 
to WP4.1 requirements 
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2.5 Pilot Site Spain  

2.5.1 Short summary 

The Spanish Test Site will provide 3 vehicles for AUTOPILOT: PSA will contribute with 2 vehicles and 
CTAG will contribute with 1 (PSA branded). 

Concerning the IoT solution for the vehicles, all the prototypes use an on-board unit to implement 
the in-vehicle IoT platform, which will communicate with the different sensors that reside inside the 
vehicle and with the external IoT platform, including the pilot site IoT platform or the Central IoT 
Platform, being both oneM2M platforms. 

This in-vehicle IoT solution, which software components are shown in Figure 2, provides the needed 
support for both Spanish use cases: 

¶ Automated Valet Parking: AD functions in a parking environment where the user can 
interact with the Valet Parking functionalities of the vehicle and the vehicle can 
communicate with the parking control center through IoT. 

¶ Urban driving: AD functions in urban environment while the IoT in-vehicle platform focuses 
on the interaction with traffic lights, vulnerable road users/obstacles and different hazards 
and events, such as traffic jams, roadworks or accidents. 

2.5.2 Software components  

In the figure below is shown an overview of the software components of the in-vehicle IoT platform 
of the Spanish pilot site and how these are connected, as well as how they connect with the IoT 
cloud platform. 

 

Figure 20: IoT software components architecture diagram of the Spanish pilot site 
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As shown in the previous figure, the main modules that compose the in-vehicle IoT platform are: 

¶ Communication interfaces: These interfaces are provided by the OBU (on-board unit) where 
the in-vehicle IoT platform is implemented. 

o Cellular (3G/4G LTE): Cellular interface to connect to the cloud 
o Wi-Fi: Wireless interface to connect to the cloud 
o ITS-G5: Wireless interface used by the V2X component to connect with other 

vehicles or infrastructure 

¶ IoT Module: OM2M implementation of the oneM2M standard, using an OSGi framework 
with its broker and the different applications implemented. This module is the one that 
translates the information that comes from the vehicle into oneM2M messages and 
translates any oneM2M message into understandable information for the vehicle. 

o IoT Broker: OM2M based ASN-CSE (oneM2M) that acts as an IoT Gateway. It 
provides the HTTP and MQTT connectivity to the IoT in-vehicle platform. 

o Bridge: Application that translates all the information from the vehicle into oneM2M 
and is responsible to publish it and provide any needed methods to obtain this data. 

o In-vehicle Applications: The needed applications that will carry the use cases 
mentioned before; AVP and Urban driving, inside the vehicle platform. These 
applications will interact with their respective cloud versions in order to provide the 
full functionality expected in the use cases. 

o Vehicle AE Interface: Application that forwards the in-vehicle IoT information to the 
TNO/Central IoT platform. This module allows an mca connection between the IoT 
platforms, avoiding the mcc connector not yet available between the different 
oneM2M IoT platforms. 

o Remote management: this software component allows the remote monitoring and 
control of different IoT devices/applications. 

¶ Runtime environment: OSGi framework that contains the stack that enables the V2X 
communication. 

o V2X Component: Contains several modules that are able to process data coming 
from V2X communication through ITS-G5. Provides the encoding/decoding for the 
SPAT/MAP, CAM and DENM messages. 

o Connectors: Provides the in-vehicle IoT platform with various connectors to transfer 
information from different sources. The connectors give the IoT module access to 
the CAN bus, GPS information and other V2X data that can be received via ITS-G5. 

¶ Intra-vehicle network: Internal modules of the car (no-IoT). 
o Vehicle sensors: The different sensors or sources of useful data for the vehicle. 
o AD control system: Module responsible for the AD functions. 

2.5.3 Verification 

The verification tests performed by the Spanish pilot site are the following:  

¶ SP-CTAG-1: IoT in-vehicle platform – REST Urban 

¶ SP-CTAG-2: IoT in-vehicle platform – AVP 

¶ SP-CTAG-3: In-vehicle platform availability – basic connectivity 

¶ SP-CTAG-4: IoT in-vehicle platform to TNO platform 

¶ SP-CTAG-5: Cellular connectivity 

¶ SP-CTAG-6: Wi-Fi connectivity 

¶ SP-CTAG-7: Urban data models 

¶ SP-CTAG-8: AVP data models 

¶ SP-CTAG-9: AVP events 
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In the following tables are the specifications of the tests: 
 

Verification test ID SP-CTAG-1 (M18) 

Test Title IoT in-vehicle platform – REST Urban 

Link to T2.5 Anticipates IoT_platform type verification. 

High level objective of the test Basic test of connectivity between a REST Service and the in-
vehicle platform. 

Involved software components  
 

Communication interfaces, In-vehicle IoT Broker, In-vehicle 
Urban application, (Urban Service). 

How the test is realized  With a mock urban service running, communicate the in-vehicle 
platform with it and send/receive messages. 

Pass test criteria  
 

In-vehicle IoT platform is able to request and receive 
information from the Urban Service with a REST API. 

Results [yes / no] Yes 

 
 
 

Verification test ID SP-CTAG-2 (M18) 

Test Title IoT in-vehicle platform – AVP 

Link to T2.5 Anticipates IoT_platform type verification. 

High level objective of the test Basic test of connectivity between an IoT Service and the in-
vehicle platform. 

Involved software components  
 

Communication interfaces, In-vehicle IoT Broker, In-vehicle AVP 
application, Vehicle AE Interface, (AVP Service). 

How the test is realized  Perform some communication between the AVP Service and the 
in-vehicle AVP app through the IoT infrastructure. 

Pass test criteria  
 
 

In-vehicle IoT platform is able to request and receive 
information from the AVP Service with IoT messaging. 

Results [yes / no] Yes 

 
 
 

Verification test ID SP-CTAG-3 (M18) 

Test Title In-vehicle platform availability – basic connectivity 

Link to T2.5 Anticipates IoT_platform type verification. 

High level objective of the test Basic test of connectivity directly to the in-vehicle IoT platform. 

Involved software components  
 

Communication interfaces, In-vehicle IoT Broker. 

How the test is realized  IoT in-vehicle platform is able to receive and send messages. 

Pass test criteria  
 
 

In-vehicle IoT platform is available and can receive and process 
IoT messages. 

Results [yes / no] Yes 

 
 
 
 
 
 



 
 

61 

Verification test ID SP-CTAG-4 (M18) 

Test Title IoT in-vehicle platform to TNO platform 

Link to T2.5 Anticipates IoT_platform type verification 

High level objective of the test Connectivity between the in-vehicle IoT Platform and the TNO 
IoT Platform through an AE. 

Involved software components  
 

Communication interfaces, In-vehicle IoT Broker, Vehicle AE 
Interface, TNO IoT Platform. 

How the test is realized  Registration of the Vehicle AE into the TNO Platform. 

Pass test criteria  Successful registration and communication. 

Results [yes / no] Yes 

 
 

Verification test ID SP-CTAG-5 (M18) 

Test Title Cellular connectivity 

Link to T2.5 Anticipates IoT_platform type verification 

High level objective of the test Basic test of connectivity only with cellular networking. 

Involved software components  
 

Communication interfaces (Cellular), In-vehicle IoT Broker. 

How the test is realized  Disable other communication interfaces and check the 
connectivity with the cellular module only. 

Pass test criteria  Messages are correctly sent and received. 

Results [yes / no] Yes 

 
 

Verification test ID SP-CTAG-6 (M18) 

Test Title Wi-Fi connectivity 

Link to T2.5 Anticipates Vehicle_safety_urban_drivingtype verification. 

High level objective of the test Basic test of connectivity only with 802.11 Wi-Fi networking. 

Involved software components  Communication interfaces (Wi-Fi), In-vehicle IoT Broker. 

How the test is realized  Disable other communication interfaces and check the 
connectivity with the Wi-Fi module only. 

Pass test criteria  Messages are correctly sent and received. 

Results [yes / no] Yes 

 
 

Verification test ID SP-CTAG-7 (M18) 

Test Title Urban data models 

Link to T2.5 Anticipates Vehicle_safety_urban_driving type verification. 

High level objective of the test Verification of preliminary urban data models (traffic lights, 
VRUs, hazards, etc.) 

Involved software components  
 

Communication interfaces, in-vehicle IoT broker, in-vehicle 
Urban application, (Urban Service). 

How the test is realized  Messages relative to the Urban use case (traffic light, VRUs, 
hazards) are sent and received and can be understood by the in-
vehicle IoT platform. 

Pass test criteria  
 
 

Messages are correctly processed as traffic lights, VRUs or 
hazards by the in-vehicle IoT platform and verified via logging 
outputs. 

Results [yes / no] Yes 
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Verification test ID SP-CTAG-8 (M18) 

Test Title AVP data models 

Link to T2.5 Anticipates Vehicle_safety_valet_parking type verification. 

High level objective of the test Verification of preliminary AVP data models (VRUs). 

Involved software components  
 

Communication interfaces, in-vehicle IoT broker, in-vehicle 
AVP application, (AVP Service). 

How the test is realized  Messages relative to the Urban use case (VRUs) are sent and 
received and can be understood by the in-vehicle IoT platform. 

Pass test criteria  
 

Messages are correctly processed as VRUs by the in-vehicle IoT 
platform and verified via logging outputs. 

Results [yes / no] Yes 

 

Verification test ID SP-CTAG-9 (M18) 

Test Title AVP events 

Link to T2.5 Anticipates Vehicle_safety_valet_parking type verification 

High level objective of the test Verification of IoT events received by in-vehicle IoT platform. 

Involved software components  
 

Communication interfaces, in-vehicle IoT broker, in-vehicle 
AVP application, (AVP Service). 

How the test is realized  Event messages (drop-off, pickup) are sent and received by 
the in-vehicle IoT platform, and processed correctly by the 
in-vehicle AVP application. 

Pass test criteria  
 

AVP in-vehicle application correctly processes the pickup and 
drop-off events. 

Results [yes / no] Yes 

2.5.4 Data logging and management 

The Spanish pilot site in-vehicle IoT platform will be logged according the Autopilot requirements. 
The data will be stored following the format defined by the Autopilot consortium in each of the 
communication points as shown in the figure below.  

 

 
 

Figure 21: IoT software components architecture diagram of the CTAG prototype vehicle 
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The in-vehicle IoT platform will use the Google Protocol buffers (PROTOBUF) for some of the in-
vehicle data. Furthermore, InterCor’s format will also be used for logging ITS-G5 data, and this 
format will be extended to allow the logging of the IoT messages. 
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3 Data recording and management in the in-vehicle IoT platform 

3.1 Overview  

In addition to its IoT capabilities, the in-vehicle IoT platform of T2.1 should handle logging and 
accurate transfer of data emanating from the vehicle, as it is the gateway between the vehicle and 
the IoT world.   

WP4 sets requirements of the data that has to be collected, within D4.1 [4] and in a related 
spreadsheet [5], and gets feedback from WP3 on their availability [6]. WP4 also proposes a format in 
which data should be available at the Central Test Server, in order to be correctly interpreted by 
analysts. The approach has been to start from Intercor [7] and extend it for AUTOPILOT usage [8]. 

T3.4 defines a methodology for data collection, including data from vehicles and their sensors [9]. 
I.e., T3.4 should ensure that data get converted in the proper format before being available to 
analysts at the CTS. Of course, the earlier this is done (e.g. in the design of an IoT device/vehicle) the 
better.  

Therefore, T2.1 verifies that on-board unit do not only have IoT capabilities, but can also log in a 
proper format, and specifically, as treated in this chapter, T2.1 defined the vehicle data log format 
for AUTOPILOT. 

 

Figure 22: Data management chain. WP4 sets requirements for the CTS. Data conversion may happen in any step before. 

AUTOPILOT needs to agree on these common aspects regarding the data uploaded at the Central 
Test Server (CTS): 

1. Logical organisation (grouping) of data into data sets/files 
e.g. split Vehicle Data in GPS data, target detection, sensor types 
e.g. split communication into files of same message types 

2. 5ŜŦƛƴƛǘƛƻƴ ƻŦ  ǇŀǊŀƳŜǘŜǊǎ ƛƴ Řŀǘŀ ǎŜǘ όƴŀƳŜΣ ǘȅǇŜΣ ǾŀƭǳŜ ǊŀƴƎŜΣ ŦǊŜǉǳŜƴŎȅΣ Χύ 
e.g. define speed in m/s (see AUTOPILOT_WP4_DataReqs_0.5.xlsx) 

3. Definition of file encoding and format  
e.g. define encoding and file format (PROTOBUF, json, xml, UPER, csv, sql) 

Data types that should be recorded in the on-board system include:  

¶ Vehicle data 

¶ V2X On-board communication logging 

¶ IoT On-board communication logging 

¶ Event data 

¶ Situational data 

T2.1 has focused on Vehicle data, as WP4 requested a specific contribution to T2.1, in the data 
format definition. This is the topic of the next sections. Concerning the rest of the data, the on-board 
platforms are expected to follow the guidelines given by AUTOPILOT. Hereafter, a brief overview is 
given. 

For V2X On-board communication, data about the transmitted and received CAM and DENM should 

Vehicle, 
IoT Device, 
Vehicle IoT 

platform
PS data storage

PS data processing:
filtering, 

conversion, 
aggregation, ….

CTS
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be logged, as needed by the technical evaluation. The format at the end of the chain should follow 
the Intercor Common Communication [10] and its extensions currently being defined within 
AUTOPILOT. 

For IoT data, the reference is T2.3 IoT data model and the IoT Data Model Task Force. Specifically, 
the messages sent from vehicles to the IoT platform e.g. for car sharing, AVP, and platooning use 
cases should be compliant to the “vehicle package” based on SENSORIS (reference is a dedicated 
GitLab repository at https://gitlab.com/autopilot/iot-data-model and wiki at 
https://gitlab.com/autopilot/iot -data-model/wikis/home).  Also other use cases, e.g. those included 
in the Italian pilot site, follow a similar model. For evaluation purposes, it is expected that the in-
vehicle IoT platform should at least record: sent message “uuid” (Universal Unique Message 
Identifier), sent message contents and sending timestamp, and received message “uuid” and 
reception time.  

Event data types refer to the logged Autonomous Driving (AD) function, and to the underlying 
service logics. This is the main data type to use for extracting the IoT added value, as it includes the 
actions generating IoT data aimed at the in-vehicle system, the triggers and control actions taking 
place in the vehicle system upon reception of IoT data, and the effects of IoT data on (changes in) AD 
behaviour. Generalizing, events include also Human Machine Interface (warnings), e.g. in case of 
partially or non-automated driving, or also in case an HMI simulates a manoeuver which cannot be 
done due to safety reasons. Each of these cases is considered as an event model. The reference is 
AUTOPILOT_CommonApplicationLogFormat_extension_v0.7.7.xlsx, where an example was provided 
by TNO on Platooning. Every partner (i.e. every pilot site) has to define an EVENT MODEL (ref. 
Intercor §5.2) to clarify the sequence of event related to the specific Use Case. This action is left at 
general IoT level, but it impacts on the different on board platform prototypes, which need to 
include given event logging corresponding to given pilot site/use case.  

Situational data are external situations which may affect AD functions, and possibly cannot be 
detected by the in-vehicle sensors (or they are detected from a parallel source). These include traffic 
congestions, traffic management decisions, incident validation, traffic light control data, weather 
conditions etc. Situational data are generally recorded at Test Site level (e.g. weather). Some vehicle-
related situational data are expected to be received through V2X/IoT (e.g. the Signal Phase and Time 
– SPAT received on board) and, from the logging point of view, are treated as V2X and IoT messages 
respectively. 

3.2 Vehicle data recording and management 

3.2.1 Basic assumptions 

Similarly to the other data types, the basic assumptions for vehicle data are taken from the Intercor 
Project, which states [10]: 

¶ Every vehicle, platform and device provides its own logging, and manages the integrity of its 
logging with unique identifiers and time stamping 

¶ Log data is provided per experiment, test run or test session. Data loggers should manage 
the size, test sessions and chronological order of log data. When logging is provided in 
separate files, the filenames should make should make this explicit by including the 
log_stationid, log_applicationid and a starting timestamǇ ƛƴ ǘƘŜ ƭƻƎ ŦƛƭŜ ƴŀƳŜǎ όΧύ 

¶ All stations and applications that generate logging are time synchronized. Time 
synchronization issues cannot be fixed afterwards 

¶ All timestamps are logged in a common time format, time zone and time unit: Coordinated 
Universal Time (UTC) in milliseconds since Unix epoch (number of milliseconds that have 
elapsed since January 1, 1970 (midnight UTC/GMT), not counting leap seconds (in ISO 8601: 
1970-01-01T00:00:00Z).  

https://gitlab.com/autopilot/iot-data-model
https://gitlab.com/autopilot/iot-data-model/wikis/home
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o Timestamps in other time formats are converted in the logging to avoid a posteriori 
conversion and interpretation issues in other software tools.  

o If timestamps in the original message are essential for identification of the message, 
referencing or analyses, then these should obviously be logged and appended, 
together with the converted value in UTC.  

¶ Locations or positions are defined in WGS84 coordinates: latitude, longitude, 
bearing/heading. Latitude and longitude should be in degrees with 10^-7 precision. Locations 
may be supplemented with roadid, direction, lane id, etc. for reference. 

¶ Data element names should be unique. When data element names are reused within a log 
station, log application or message type, they are assumed to have the same semantics and 
units. To avoid issues in conversion between tools, it is recommended to use only lower case 
ŎƘŀǊŀŎǘŜǊǎΣ ŘƛƎƛǘǎ ŀƴŘ ǳƴŘŜǊǎŎƻǊŜǎ όάψέύΦ bƻ ǎǇŀŎŜǎ ƛƴ ǘƘŜ ƴŀƳŜǎΦ 5ŀǘŜ ŜƭŜƳŜƴǘ ƴŀƳŜǎ ǿƛǘƘ 
capital letters should also be unique when all letters are converted to lower case letters. 

3.2.2 Logical Organization in files/datasets 

File naming is an AUTOPILOT modification of the from Intercor definition [10] and uses  

<messagetype>_<log_stationid>_<utc_time_iso8601>[_<formattype>].<filetype> 

In particular, since almost all the IoT on-board units, i.e. the in-vehicle IoT platforms, are expected to 
integrate ITS G5 to send Cooperative Awareness Message (ETSI ITS G5 CAM message); and since 
prototypes are generally associated with pilot sites and the related data management, the following 
coding has been decided: 

<log_stationid> = Country Code (2 digits) + ITS G5 station id (2 digits) 

For instance, Pilot Site Italy OBU numbering can be: 3901, 3902, etc.; and Pilot Site the Netherlands 
3101, 3102, etc. 

Conventionally, the OBU maintains this coding also when going to another pilot site than the one 
originally associated. For instance, a French vehicles going to another pilot site outside France, will 
maintain their numbers (3301, 3302, etc.).     

All components, levels, loggers, sensors, communication units, etc. in a single vehicle should have 
the same stationid = log_stationid. The principle is that everything that travels along the same 
trajectory and with the same speed is part of the same physical station. 

 To distinguish the logged parameters within a stationid, every component, level, logger, sensor, 
communication unit, IoT platform, can have a log-applicationid that is unique within the same 
stationed, similarly to Intercor (the reference is Intercor Common Data Logging [7] , and specifically 
sections 2.2 and 3.1-3.3). 

3.2.3 Definition of parameters in data set 

AUTOPILOT identifies Data types, which are similar to the InterCor Layers. The classification comes 
from AUTOPILOT WP4 data requirements [ref. AUTOPILOT_WP4_DataReqs_0.5.xlsx]. From a 
practical point of view, T2.1 working group made reference to the pilot site feedback spreadsheet 
[AUTOPILOT_DataRequirements_PSFeedBack.xlsx]. 

Data types include 

Å Vehicle data (topic of the present task) 
Å Vehicle Sources 
Å Vehicle Data  
Å Derived Data 
Å Positioning 
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Å V2X Messages 
Å IoT Messages 
Å Events 
Å Situational Data 

Concerning Vehicle Data and Derived Data, the general rule to be followed is that WP4 does not 
need raw sensors data, but rather the information of detections by in-vehicle sensors.   

Given the differences in data availability from pilot sites’ on board units, another guideline is to leave 
out completely the columns of datasets that are systematically unavailable, while leaving empty 
fields when data are occasionally unavailable.  

3.2.4 In-vehicle data log format 

Using the general approach and guidelines described in 3.1 and coming mainly from Intercor, T2.1 
issued a spreadsheet which is a comprehensive definition of the schema for vehicle data logging to a 
central repository for evaluation. This spreadsheet is organized in Excel panels (or tables), and 
includes  

- two introductory tables with explanation and versioning, respectively  
- one table (named “each table”) with meta data for the data that need to be logged with 

every message in a file or row(s) in a table  
- the following table corresponding to the (log) message contents, namely: 

o vehicle 
o positioning_system 
o vehicle_dynamics 
o driver_vehicle_interaction 
o environment_sensors 

 
The format tables are reported in Table 1. 
 
Table 1 ς ǘŀōƭŜ άŜŀŎƘ ǘŀōƭŜέ όƳŜǘŀ-data) 

 
 
 

Name Type Range Unit Description ADA

rowid serial 0.. [N/A]

 -- sequence of row numbers to uniquely identify a 

log line by <log_stationid, log_timestamp, rowid>, 

only necessary when a subtable is logged

C

log_timestamp long from 0 to 4398046511103 (= 2щч-1) msec

 -- timestamp at which the log_stationid logs 

(writes)  the  data row.  elapsed time since 

midnight January 1st 1970 UTC M

log_stationid

long from 0 to 4294967295 (= 2³²-1) [N/A]

 -- unique id of the host (e.g. stationid, server id, 

IoT platform or device id, cloud service id, ...) that 

logs this log data row. Log_stationid can be another 

host than the source generating the data to be 

logged M

log_applicationid long from 0 to 4294967295  (= 2³²-1) [N/A]  -- unique id of the application, instance or thread, 

on the log_stationid host that logs this log data 

row. Applicationid is at least unique within the 

log_station.  ApplicationId is mandatory if multiple 

components on a host  log to the same table or if 

the application logging into a table is not trivial 

(e.g. it is trivial that a CAM Basic Service is the only 

application logging CAM messages in the cam O
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Table 2 ς ǘŀōƭŜ άǾŜƘƛŎƭŜέ 

 
 
 
Table 3 ς ǘŀōƭŜ άǇƻǎƛǘƛƻƴƛƴƎψǎȅǎǘŜƳέ 

 
 
 
Table 4 ς tablŜ άǾŜƘƛŎƭŜψŘȅƴŀƳƛŎǎέ 

 
 
 
Table 5 ς ǘŀōƭŜ άŘǊƛǾŜǊψǾŜƘƛŎƭŜψƛƴǘŜǊŀŎǘƛƻƴέ 

 
 

Name Type Range Unit Description

speed double from 0 to 163.82 [m/s] Speed over ground, meters per second.

outsidetemperature double from -60 to 67 [°C] Vehicle outside temperature during trip.

insidetemperature double from -60 to 67 [°C] Vehicle inside temperature during trip.
batterysoc double from 0 to 100 [%] Percentage of the battery of the vehicle.
rangeestimated double from 0 to 1000 [km] Range estimated with the actual percentage of the battery and/or available fuel.
fuelconsumption double from 0 to 1 [L/km] Average fuel consumption during a route or trip.
enginespeed int from 0 to 10000 [1/min] Engine speed calculated in terms of revolutions per minute.
owndistance double from 0 to 5000 [km] Total kilometrage per day or trip or road type etc.

Name Type Range Unit Description

speed double from 0 to 163.82 [m/s] Speed over ground, meters per second. Measured by GNSS receiver.

longitude double from -90 to 90 [degree] Longitude

latitude double from -180 to 180 [degree] Latitude

heading double from 0 to 360 [degree] Heading

ggasentence string [NMEA format]GGA - Fix information.

gsasentence string [NMEA format]GSA - Overall Satellite data.

rmcsentence string [NMEA format]RMC - recommended minimum data for gps.

vtgsentence string [NMEA format]VTG - Vector track an Speed over the Ground.

zdasentence string [NMEA format]ZDA - Date and Time.

Name Type Range Unit Description

yawrate

double from -327.66 to 327.66[°/s] Vehicle rotation around the centre of mass of the empty vehicle. The leading sign 

denotes the direction of rotation. The value is negative if the motion is clockwise when 

viewing from the top. 

acclateral double from -16 to 16 [m/s2] Lateral acceleration of the vehicle.

acclongitudinal double from -16 to 16 [m/s2] Longitudinal acceleration of the vehicle.

accvertical double from -16 to 16 [m/s2] Vertical acceleration of the vehicle.

speedwheelunitdistance double from 0 to 163.82 [m/s] Sensor on free running wheel for increased accuracy. Speed measured from wheels (???).

Name Type Range Unit Description

throttlestatus int from 0 to 100 [%]
Position of the throttle pedal (% pushed). Modify to boolean 

(i.e., 0->NOT PUSHED, 1-> PUSHED) if % is not available on the car.

clutchstatus int from 0 to 100 [%]
Position of the clutch pedal (% pushed). Modify to boolean (i.e., 

0->NOT PUSHED, 1-> PUSHED) if % is not available on the car.

brakestatus int from 0 to 100 [%]
Position of the brake pedal (% pushed). Modify to boolean (i.e., 0-

>NOT PUSHED, 1-> PUSHED) if % is not available on the car.

brakeforce double from 0 to 300 [bar] Measure of master cylinder pressure.

wipersstatus enum [ 'OFF' 'ON'] [N/A]

Position of the windscreen wipers (boolean). Extend the 

enumeration if more details are available (e.g., ['OFF', 'SLOW', 

'FAST'], ['OFF', 'SLOW1', 'SLOW2', 'FAST1', 'FAST2']).

steeringwheel double from -720 to 720 [°] Position of the steering wheel.
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Table 6 ς ǘŀōƭŜ άŜƴǾƛǊƻƴƳŜƴǘψǎŜƴǎƻǊǎέ 

 
 

3.2.5 In-vehicle data log encoding 

For the data encoding, InterCor proposes: SQL, CSV, XML (§4.2) [add ref.], but any human readable 
format is acceptable. For instance, ITALY proposes PROTOBUF for all logs from IoT platform. 
 
 

Name Type Range Unit Description

longitude double from -90 to 90 [degree]

Main object transformed to geolocalized coordinates 

longitudinal (log_applicationid identifies the sensor providing 

this measurement (e.g., camera, LIDAR, radar...)).

latitude double
from -180 to 

180
[degree]

Main object transformed to geolocalized coordinates lateral 

position (log_applicationid identifies the sensor providing this 

measurement (e.g., camera, LIDAR, radar...)).

obstacle_ID int from 0 to 1000 [-] ID of the obstacle detected by environmental sensors.

x double from 0 to 500 [m]

Main object relative distance longitudinal / x-direction 

(log_applicationid identifies the sensor providing this 

measurement (e.g., camera, LIDAR, radar...)).

y double from -50 to 50 [m]

Main object relative distance lateral / y-direction 

(log_applicationid identifies the sensor providing this 

measurement (e.g., camera, LIDAR, radar...)).

obstacle_covariance float64
Covariance matrix of positions of longitude, latitude, altitude 

of RADAR detected objects.

ObjectClass int from 0 to 65 [-] 65 classes from Mapillary dataset[1]

lanewidthsensorbased double from 0 to 10 [m] Lane width measured by on-board sensor(s).

lanewidthmapbased double from 0 to 10 [m] Lane width from map information.

trafficsigndescription string [N/A] signrecognition[2]

speedlimit_sign double from 0 to 250 [km/h] signrecognition [3]

servicecategory enum

[ 

'dangerWarnin

g', 'regulatory', 

'informative', 

'publicFacilities

', 

'ambientCondit

ion', 

'roadCondition

' ]

[N/A]

signrecognition [4]

servicecategorycode int
[ 11, 12, 13, 21, 

31, 32 ]
[N/A]

signrecognition[5]

countrycode string [N/A] signrecognition [6]

pictogramcategorycode int from 0 to 999 [N/A] signrecognition [7]

VRU_pedestrian_class int from 0 - 3

1 = children, 

2 = adults, 

3 = elderly

Sub classes of pedestrians.

VRU_cyclist_class int from 0 - 3

1 = children, 

2 = adults, 

3 = elderly

Sub classes of cyclists/riders.

confidence_levels double from 0 - 100 [%]
Indication for false positive detections (minimum default 

level).

Environ_info int from 1 - 6 [-]
1=sunny/day, 2=raining/day, 3=snow/day, 4=night/dry, 

5=raining/night, 6=snow/night

Road_hazard int from 0 to 42 [N/A]
No standardized dataset available --> current proposal: 

pothole detection, slippery road, black ice etc.

sensor_position int from 0 to 1000 [mm]
Position of sensor on vehicle wrt. CoG. required for 

correlating to environmental detection with IoT detections.

process_delay int from 0 to 1000 [ms] Is processing delay known or unknown?
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4 Conclusions 

Within T2.1, the integration of IoT in the vehicle has been performed. Within the vehicle an on board 
component, called “on-board IoT platform”, enables the connectivity of AUTOPILOT vehicles, the 
exchange of vehicle data with the IoT, thus making the vehicle an “IoT device”, and includes 
processing functionalities such as to contribute to IoT applications and enable to the autonomous 
driving use cases of Automated Valet Parking, Urban Driving, Highway Driving, Highway Pilot and Car 
rebalancing for Shared Vehicles. Being   Table 7 summarizes the on board IoT integration in the 
different prototypes. It highlights the main interfaces, in line with the general concept scheme 
outlined in the introduction (Figure 1), namely:  

¶ connectivity of the vehicle with neighbour entities, for vehicular networking 

¶ main connection by the in-vehicle IoT platform to the general IoT platform  

¶ other IoT connections, e.g. on-board services with their own cloud, synchronised with the 
IoT platform independently from the in-vehicle-IoT platform. 

¶ interface to the intra-vehicle network  (OEM-vehicle network) 

¶ interface to local IoT devices and applications (additional IoT network in the vehicle) 
 
Table 7 ς Summary of IoT integration in AUTOPILOT vehicles: main interfaces  

Pilot 

Site/Prototype 

Neighbour 

entities 

connection 

Main IoT 

connection 

Other IoT 

connections 

 

Interface 

to intra-

vehicle 

network 

 

Interface to IoT 

devices and 

applications in the 

vehicle 

PS Finland ETSI ITS G5 MQTT 

(LTE/4G) 

- CAN DDS  
 

PS Italy ETSI ITS G5 ETSI OneM2M 

over MQTT 

(LTE/4G) 

Conti 

connected 

eHorizon 

(IoT 

connection in  

the cloud) 

CAN   To Inertial sensors: 

6LoWPAN (CNIT 

vibration sensor), CAN 

(CRF IMU) and MQTT 

over WiFi 

(smartphone) 

PS France ETSI ITS G5 ETSI OneM2M 

HTTP requests 

 CAN ROS 

PS NL/ TNO & 

NEVS 

ETSI ITS G5 

/UWB 

ETSI OneM2M via 

Websocket 

requests 

(LTE/4G) 

- CAN ROS/UDP 

PS NL/TUE ETSI ITS G5 OneM2M over  

MQTT requests 

HUAWEI 

OceanConnect 

NEC motion 

planning 

NEC Crowd 

Detector via 

CAN ROS 
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Pilot 

Site/Prototype 

Neighbour 

entities 

connection 

Main IoT 

connection 

Other IoT 

connections 

 

Interface 

to intra-

vehicle 

network 

 

Interface to IoT 

devices and 

applications in the 

vehicle 

over HTTP 

(LTE/4G) 

NGSI (FIWARE) 

PS NL/VALEO ETSI ITS G5 MQTT publish 

anomaly to VALEO 

cloud 

TomTom 

Horizon 

server/client 

CAN UDP 

PS NL/IBM - OneM2M/MQTT 

(LTE/4G) 

- -  

PS NL/DLR - MQTT 

(LTE/4G) 

- CAN ROS 

PS Spain ETSI ITS G5 ETSI OneM2M 

over HTTP/MQTT 

 CAN OM2M 

As a whole IoT integration choices have been rather heterogeneous in AUTOPILOT, especially for 

locally connected IoT devices and applications. However, in order to fulfil the use cases, basic 

principles have been followed, namely to  ensure the interaction with the pilot site IoT platform, the 

usage of ITS G5 for vehicular networking and the access to the intra-vehicle network when needed, 

both to control the vehicle and to obtain more precise data on vehicle dynamics.  

The developed systems have been checked by prototype leaders in order to get ready for system 

verification in T2.5 and then adapted and extensively tested within WP3. The few remaining checks 

will be handled within the piloting activity. 

Another important topic for the sake of the pilots is the data recording within the vehicle. This 

aspect is key to evaluate the autonomous driving behaviour, provided by T2.2. Beyond addressing 

the requirements from other AUTOPILOT tasks, this task T2.1 has contributed to the definition of in-

vehicle data format.  
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